
SAP Business
Planning and
Consolidation 7.0
SP03
version for the Microsoft platform

Target Audience
 System Administrators
 Technology Consultants

Document version: 2.0 – January 30, 2009

SAP Library
BPC Administration Guide

PUBLIC

SAP Library: BPC Administration Guide

January 30, 2009 Page 2 of 217

© Copyright 2009 SAP AG. All rights reserved.

No part of this publication may be reproduced or
transmitted in any form or for any purpose
without the express permission of SAP AG. The
information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG
and its distributors contain proprietary software
components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint
are registered trademarks of Microsoft
Corporation.

IBM, DB2, DB2 Universal Database, OS/2,
Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400,
OS/390, OS/400, iSeries, pSeries, xSeries,
zSeries, z/OS, AFP, Intelligent Miner,
WebSphere, Netfinity, Tivoli, Informix, i5/OS,
POWER, POWER5, OpenPower and PowerPC are
trademarks or registered trademarks of IBM
Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and
Reader are either trademarks or registered
trademarks of Adobe Systems Incorporated in
the United States and/or other countries.

Oracle is a registered trademark of Oracle
Corporation.

UNIX, X/Open, OSF/1, and Motif are registered
trademarks of the Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame,
WinFrame, VideoFrame, and MultiWin are
trademarks or registered trademarks of Citrix
Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or
registered trademarks of W3C®, World Wide
Web Consortium, Massachusetts Institute of
Technology.

Java is a registered trademark of Sun
Microsystems, Inc.

JavaScript is a registered trademark of Sun
Microsystems, Inc., used under license for
technology invented and implemented by
Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp,
SAP NetWeaver, and other SAP products and
services mentioned herein as well as their
respective logos are trademarks or registered
trademarks of SAP AG in Germany and in
several other countries all over the world. All
other product and service names mentioned are
the trademarks of their respective companies.
Data contained in this document serves
informational purposes only. National product
specifications may vary.

These materials are subject to change without
notice. These materials are provided by SAP AG
and its affiliated companies ("SAP Group") for
informational purposes only, without
representation or warranty of any kind, and SAP
Group shall not be liable for errors or omissions
with respect to the materials. The only
warranties for SAP Group products and services
are those that are set forth in the express
warranty statements accompanying such
products and services, if any. Nothing herein
should be construed as constituting an additional
warranty.

SAP Library document classification: PUBLIC

Disclaimer
Some components of this product are based on
Java™. Any code change in these components
may cause unpredictable
and severe malfunctions and is therefore
expressively prohibited, as is any decompilation
of these components.

Any Java™ Source Code delivered with this
product is only to be used by SAP’s Support
Services and may not be modified or altered in
any way.

Documentation in the SAP Service
Marketplace
Documentation is available on SAP Service
Marketplace at
http://service.sap.com/instguidescpm-bpc

SAP AG
Dietmar-Hopp-Allee 16
69190 Walldorf
Germany
T +49/18 05/34 34 24
F +49/18 05/34 34 20
www.sap.com

http://service.sap.com/instguidescpm-bpc
http://www.sap.com

SAP Library: BPC Administration Guide

January 30, 2009 Page 3 of 217

Table of Contents
Welcome to BPC Administration ...7

Starting BPC Administration..7

Understanding action panes..7

Minimizing/maximizing action panes ..9

Admin Console vs. Web Admin Tasks ...9

Managing Application Sets... 11

Setting application set status .. 11

Adding new application sets.. 11

Setting template version .. 12

Refreshing client-side dimension files... 13

Deleting application sets .. 13

Changing application set descriptions... 13

Deleting dimensions .. 13

Viewing who is online .. 13

Using Apshell, the sample application set ... 13

Managing Dimensions... 17

About Managing dimensions ... 17

Adding dimensions .. 19

Copying dimensions... 20

Processing dimensions ... 20

Exporting Dimensions .. 20

Scheduling dimension processing .. 21

Maintaining dimension members ... 21

Assigning dimensions to applications ... 23

Using dimension properties .. 24

Managing Applications .. 34

About working with applications .. 34

Adding new applications... 34

About the Rate application.. 35

Copying applications.. 36

Changing work status settings for applications .. 36

Setting concurrent locks... 37

Optimizing applications .. 37

Required dimensions in applications .. 38

Managing data audit .. 39

Creating a YTD storage application .. 39

Deleting applications ... 40

Managing Security ... 41

SAP Library: BPC Administration Guide

January 30, 2009 Page 4 of 217

About security .. 41

Using SSL (HTTPS) Web Site Security .. 41

Setting up users.. 42

Setting up teams... 43

Setting up profiles... 44

Viewing security reports... 52

Managing Business Process Flows .. 54

About business process flows.. 54

Copying a Business Process Flows ... 54

Resetting Business Process Flows .. 54

Reporting on Business Process Flows ... 54

Adding new business process flows.. 55

Managing Work States ... 59

Managing Business Rules .. 63

About business rules.. 63

Setting up a legal consolidation application set ... 63

About currency conversions .. 63

About intercompany eliminations... 65

Adding business rules tables to applications.. 67

Defining rules ... 67

Using the Business Rule Library .. 79

Using Script Logic .. 82

Logic Assistant.. 82

Adding UDF functions to the Logic Assistant.. 82

The BPC MDX library.. 83

The BPC SQL library .. 95

Rules keyword reference .. 102

Managing custom menus .. 154

Adding custom menus.. 154

Managing Journals ... 156

Creating journal templates ... 157

Setting up journal security ... 158

Clearing journal tables ... 158

Limiting journal dimension member lists .. 159

Locking data for journal input only .. 159

Setting up Journals Application parameters .. 159

Defining journal validation rules .. 160

Managing Insight ... 162

Setting up Insight ... 162

Setting up the RootCauseEvent table ... 162

About the root cause/KPI association ... 163

Managing users... 164

SAP Library: BPC Administration Guide

January 30, 2009 Page 5 of 217

Importing/Exporting configurations ... 167

Setting system configurations ... 167

Viewing services and logs... 170

Maintaining a BPC server .. 171

BPC Server Manager.. 171

Importing Non- BPC reports.. 171

Editing default messages.. 173

Database specifications .. 174

Web Admin tasks ... 176

Setting application set parameters .. 176

Setting application parameters.. 179

Deleting books.. 183

Enabling activity auditing ... 183

Reporting on activity audit.. 183

Setting up drill-through.. 185

Managing document types and subtypes .. 187

Tips and Troubleshooting .. 189

Microsoft Office tips and tricks .. 189

Setting client options ... 191

Updating application set information.. 192

Troubleshooting .. 192

Appendix A: Security Management in BPC... 194

About task profiles .. 194

About member access profiles... 194

Appendix B: Best Practices for Writing Logic.. 199

The Golden Rules .. 199

Rule 1: Stay away from MDX logic... 199

Rule 2: Load in memory only the required data... 202

Rule 3: Carefully select the “triggers” of your calculations .. 203

Rule 4: Keep the logic structure as compact as possible ... 204

Rule 5: Minimize the number of COMMITs .. 206

Rule 6: Minimize the number of GO statements .. 209

Rule 7: Keep in default logic only the calculations that are absolutely required to be performed in real
time .. 209

Rule 8: Always review the LOG files... 209

Rule 9: Avoid refresh-after-send in Excel ... 210

Rule 10: Run a stress test before going live.. 210

Appendix C: Script logic documentation updates .. 211

Ability to control SQL time-out .. 211

Calling the same stored procedure multiple times.. 211

Running the last stored procedure within a given COMMIT section... 211

Added support of %WHEN% keyword in *REC instruction... 212

SAP Library: BPC Administration Guide

January 30, 2009 Page 6 of 217

Ability to disable CALC_EACH_PERIOD in one GO section ... 212

Ability to disable CALC_EACH_PERIOD in one CALC_ORG or CALC_DUMMY_ORG section.................. 212

Index ... 213

SAP Library: BPC Administration Guide

January 30, 2009 Page 7 of 217

Welcome to BPC Administration

Business Planning and Consolidation (BPC) Administration is a tool that allows administrators to perform
setup and maintenance tasks for BPC client applications.

Starting BPC Administration
BPC Administration has two interfaces: A client application and a web interface. The Administration action
pane lists the available tasks for both interfaces.

To start BPC Administration

1. Do any of the following:

• Open a browser and type http://<server name>/osoft, where <server name> is the
name of your BPC server.

• From the Windows Start menu, select SAP > BPC.

• From your Windows Desktop, click the BPC icon.

2. From the Launch page, select BPC Administration.

3. From the Administration action pane, select the desired task.

Understanding action panes
“Action panes” provide quick access to tasks that are relevant to your current context. In addition, you
can control your current view, view login information, jump to other programs, such as BPC for Excel and
BPC for Word, and launch context help from the action pane.

A BPC action pane consists of the following sections: Navigation, Session Information, Task Selection
or Input Fields, Available Interfaces, and See Also. These sections are described below.

Navigation

The Navigation section provides a Back, Forward, and Home button. The Back button brings you to the
previous action pane; The Forward button brings you to the next action pane (only if you previously
pressed Back); and the Home button brings you to the first action pane for the current process.

Session Information

The Session Information section contains login and current view information.

Login

This area shows the active user ID and application set. To change the application set, select the link, make
your selection, then click OK.

Current View

This area controls which members, parent members, or top-level members are represented in the active
report or input schedule. It allows you to dynamically change the current view by entering various
members, or selecting them from the Member Lookup. You can expand the section to view all available
dimensions and members to which you have access.

Sample Session Information

Sample Session Information

 Login:

ID: HHalter

Appset: ApShell

 CV:

Application: FINANCE

SAP Library: BPC Administration Guide

January 30, 2009 Page 8 of 217

Account: ExtSales

RptCurrency: USD

Time: 2005.Total

Category: ACTUAL

IntCo: All_InterCo

DataSrc: Input

Entity: Worldwide 1

Task Selection or Input Fields

The Task Selection or Input Fields section displays either a list of tasks, or input fields that require
action. If a task list displays, clicking a link will perform a task, open a dialog box, or open another action
pane.

If input fields display, you must take action by completing the required fields. If you make a mistake, you
can always click the Back button at the top of the action pane.

Sample Task Selection section

Teams

Manage Teams – All Users

Security Tasks

Process security

Team Tasks

Add Teams

All Users Tasks

Modification Team

Delete Team

Available Interfaces

The Available Interfaces section contains links to other components: BPC Web, BPC for Excel, BPC for
Word, and BPC for PowerPoint. You can expand or collapse this section to see more or less, respectively,
of the Task Selection/Input Field section.

Click a link to start the desired program.

Available Interfaces Sample

Available interfaces:

BPC Web

BPC for Excel

BPC for Word

BPC for PowerPoint

See Also

The See Also section contains a link to the context help topic associated with items in the Selection or
Input area in the action pane. Click the link to view field-level help, an overview, and a how-to.

You can expand and collapse this section to see more of the Task Selection/Input Field section.

SAP Library: BPC Administration Guide

January 30, 2009 Page 9 of 217

Sample See Also Selection

See Also
 Admin Help

Minimizing/maximizing action panes
You can minimize action panes to display more of the BPC Administration interface, and then maximize it
when you need to navigate or perform a task.

To minimize an action pane

• From a displayed action pane, click the minimize button in the upper right corner.

To maximize the action pane

• Click View action pane from the BPC for Office toolbar.

Admin Console vs. Web Admin Tasks
BPC Administration has two interfaces: the Client Admin Console, which requires a small footprint, and the
Web Admin tasks, which is a zero-footprint client.

The console client is a Microsoft Explorer-like window where you manage such items as application sets,
applications, dimensions, business rules, and business process flows.

The browser client allows you to control application set and application properties, and maintain BPC Web.

The following tables describe the tasks contained in each.

Admin Console

The Admin Console contains links to tasks you can perform in the Admin client. You must have access to
the Admin client in order to perform these tasks.

Task Description

Manage Security Opens the Security node where you can define and manage BPC
security.

See Managing security

Manage Application Sets Opens the Application Set node where you can add, delete and
manage application sets.

See Managing application sets

Manager Applications Opens the Application node where you can add, delete, and
manage and delete applications.

See Managing applications

Manage Dimensions Opens the Dimension Library node where you can add, delete,
and manage dimensions in the application set.

See Managing dimensions

Manage Business Rules Opens the Business Rules node where you can define and
manage business logic.

See Managing business rules

Manage Business Process Flows Opens the Business Process Flows node where you can manage
business process flows.

See Managing business process flows

SAP Library: BPC Administration Guide

January 30, 2009 Page 10 of 217

Web Admin Tasks

Task Description

Set AppSet Parameters Opens the Application Set Parameters page,
where you can control application set-level
settings.

See Setting application set parameters

Set Application Parameters Opens the Application Parameters page,
where you can control application-level
settings.

See Setting application parameters

Manage Books You can manage the library of books stored
on BPC Web by removing them.

See Deleting books

Manage Document Types See Managing document types

Manage Document SubTypes See Managing document subtypes

Manage Activity Audit Opens the Manage Activity Audit page
where you can set up activity auditing.

See Enabling activity auditing

Manage Data Audit Opens the Manage Data Audit page where
you can set up data auditing.

See Managing data auditing

Manage Insight See Managing Insight

Publish reports

Edit Drill Through Table Opens the Edit Drill Through Table page
where you can set up the drill through
table.

See Editing the drill through table

SAP Library: BPC Administration Guide

January 30, 2009 Page 11 of 217

Managing Application Sets

An application set is a SQL database that stores all the data from each individual application in the set.

Each application is comprised of an individual Analysis Services database (or application). Each
application contains the metadata that controls the data in the application set. Applications can share one
or more dimensions with other applications within the set.

Setting application set status
You can check or change the status of an application set. The available statuses are "Available" and
"Unavailable." Some administration tasks automatically set the application set to unavailable. You can also
make it unavailable manually. See Setting the status to Unavailable.

The system will automatically be set back to Available when the process is complete, or you can manually
make it available. See Making an application set available.

Setting the status to Unavailable

You can manually set the application set to Unavailable.

Note that when an administrator logs on to an application set that is "Not Available" the following message
is displayed:

Application set: <ApShell> is not available now.
Do you want to continue?

You can select Yes to proceed with logon, or No to cancel. This message is just a reminder. You can still
work in BPC for Excel so that you can do testing while doing application maintenance. (An end user does
not have this option.) However, remember that if an application has been modified and not fully
processed, you can experience errors or be looking at old application information.

To set the status to Unavailable

1. From the Admin Console, select the application set you want to make unavailable.

2. Click Set application set status.

3. Select the Not Available radio button.

4. In the Message box, enter informative text that will be displayed when users try to logon. We
recommend including the current date and time so that users can see that the message is
current, and to give an estimated time when they can log back on again.

Setting the status to Available

When you have finished updating the application, and are ready to set it back to "Available," you can
select the Available radio button. System administrators can set the status of an application set, making
it available or not available to users. This is useful as a way of preventing access to an application when
you take it offline for maintenance, for example.

To set the status to Available

1. On the BPC Administration main screen, go to the hierarchical list in the left pane and click the
plus sign next to the application name at the top level. The Manage Application Sets action
pane is displayed.

2. Under the action pane heading Application Set Tasks, click Set application set status. The Set
Application Set Status action pane is displayed.

3. Using the radio buttons, specify if you want the application set to be Available (online) or Not
Available (offline). If you specified Not Available you may enter a text message that will
appear when users try to access the offline application set.

4. Click Update Application Set Status to set the application set status.

Adding new application sets
Administrators add a new application set by copying selected information from an existing one, such as
the ApShell application set provided with BPC. You can copy security settings, database data,
collaboration data, and/or journals.

SAP Library: BPC Administration Guide

January 30, 2009 Page 12 of 217

Note: We recommend that you add a new application set only when initially setting up BPC for a
company, or when expanding the use of BPC as a result of a license upgrade. See Editing system
administrators.

Adding a new application set does the following:

• Copies the application set Webfolders to the new application set.

• Creates a copy of the relational database (i.e., a SQL database).

• Creates a SQL database login role for the new relational database.

• Creates a copy of the Analysis Services database.

• Copies the published books, by copying the appropriate FileDB subdirectories.

• Sets subdirectory security on the Webfolders subdirectories.

• Sets configuration parameters.

After the copying is complete, you can begin to modify the default applications and add new ones, and
assign users to the application set.

To add a new application set

1. From the Admin Console, log on to the desired application set. The Manage Application Sets
action pane is displayed.

2. Under the action pane heading Application Set Tasks, click Add a new application set. The
Add a New Application Set Step 1 of 2 action pane is displayed.

3. Enter the new application set name and description. Use the drop down menu to select the
existing application set upon which you want to base the new one. Click Next. The Add a New
Application Set Step 2 of 2 action pane is displayed.

4. This action pane displays the records used in the existing application set you specified in the
previous step. Using the check boxes, select all the records that you want to copy to the new
application set. These include:

• Database records

• Data States (as per the business process flow)

• Database Security

• Business process flows

• Content library

• Live Reports

• Journals

5. When all the desired records have been selected, click Add New Application Set. The new
application set has been created.

Setting template version
If you have made changes to any of the dynamic templates for reports or schedules, you can force an
update of template files by changing the template version. When you force an update, clients that log on
to the application set will be updated with the new template(s).

This topic describes how to update the template version from the Admin Console. You can also update the
version in the TEMPLATEVERSION field on the Setting Application Set Parameters page. See Setting
application set parameters.

To set the template version

1. From the Admin Console, select the application set for which you want to reset the template
versions.

2. From the Manage Application Sets action pane, select Set template version.

3. Increment the number by 1. For example, if the current version is 10 (ten), enter 11 (eleven).

4. Click Update Template Version.

SAP Library: BPC Administration Guide

January 30, 2009 Page 13 of 217

Refreshing client-side dimension files
The only time you need to use the Refresh client-side dimension files option is when you have processed
your application outside of BPC, in Analysis Services. Otherwise the client-side dimension files are
automatically updated when you process your application in Validate and Process Members or in Optimize
application.

Deleting application sets
An administrator can delete application sets.

To delete an application set

1. From the Admin Console, select the application set name at the top of the tree.

2. From the Delete application sets action pane, select one or more application sets to delete.

3. Select Delete Selected Application Sets.

4. From the confirmation message, click Yes.

Changing application set descriptions
You can change the descriptive text associated with an application set. You might want to change the
description if you have made a significant change to the application set, such as adding a new application
that performs new functions for your business.

To change application set descriptions

1. On the BPC Administration main screen, go to the hierarchical list in the left pane and click the
plus sign next to the application name at the top level. The Manage Application Sets action pane
is displayed.

2. Under the action pane heading Application Set Tasks, click Add a new application set. The Add
a New Application Set Step 1 action pane is displayed.

3. Enter the new application set description and click the green arrow. The Add a New Application
Set Step 2 action pane is displayed. Click the green arrow. The new application set description
has been saved.

Deleting dimensions
Administrators can remove dimensions from an application set.

To delete a dimension

1. From the Admin Console, select Dimension Library.

2. From the Manage Dimensions action pane, select Delete dimension.

3. Select one or more dimensions to delete, then click Delete Selected Dimension(s).

4. Select Yes in the confirmation message box.

Viewing who is online
Administrators have the ability to monitor administrator activities.

To see who is online

1. From the Admin Console, log on to the application set and application that you want to monitor.

2. Select Who is online from the Manage applications action pane.

3. When done viewing the Who is online window, select OK.

Using Apshell, the sample application set
This section contains an overview of the ApShell application set. Apshell is not only used as a sample
application set, but also as the repository for BPC system information and defaults. Because ApShell is the
repository for system information and defaults, it gets overwritten when you upgrade to a new version of

SAP Library: BPC Administration Guide

January 30, 2009 Page 14 of 217

BPC, so you should always start your application set by creating a copy of ApShell. See Adding new
application sets.

ApShell does not contain any data and has only limited metadata (dimension members). The dimension
metadata is limited to default members in most dimensions (the Time dimension has real data) so that the
application set will work when an administrative task is run.

ApShell contains all of the required components needed to build a functioning application set:

• Sample best practices for a BPC Web implementation, which includes report wizards, system
logic, and support for Journals

• Required dimensions for each application

• Standard report and input schedule templates

• Data Manager packages and sample transformation files

ApShell is only an example. Because it is a shell, it needs to be "filled in" with publications and reports
in order to become a fully-functioning AppSet.

ApShell applications

The ApShell application set contains several sample applications. Two of those applications are Finance
and Rate, which contain most of the functionality you will need to get started building your own
application set. This topic describes the application sets.

If you need to build more complex application sets, for example, with legal reporting capabilities, you
should start with LegalApp and LRate.

Finance is an application whose type is financial. Rate is a rate-type application that supports the Finance
application. ApShell does not contain any generic (non-financial) applications. See Managing
applications.

The Finance application

Finance is a multi-currency financial application and has the Intercompany Eliminations option enabled.
Because it is multi-currency, it is attached to the Rate application (at design time) for currency rates.

Finance has the following dimensions:

Dimension
name

Dimension type

Account Account

Entity Entity

Time Time

Category Category

IntCo Intercompany Eliminations

DataSrc User defined

Used for tracking the source of input data.

RptCurrency Currency

Finance is a financial-type application, so a currency-type dimension is required.
See Managing dimensions.

Advanced rules

The ApShell Finance application has standard default advanced rules that run currency translation. The
default formula includes the FXTRANS.xls advanced rule, which sets up currency translation by running
the system TRANSLATE_LDI formula.

SAP Library: BPC Administration Guide

January 30, 2009 Page 15 of 217

The Finance application default advanced rules also have a line commented out that runs the ROLLTOBS
function. This function rolls differences from prior periods into your balance sheet accounts. See The BPC
SQL_Library.

The Rate application

The Rate application contains currency translation rates and Intercompany elimination logic. The rate
application was created first, then the Finance application was created and tied to the Rate application
when the multi-currency option was chosen.

Rate has the following dimensions:

Dimension
name

Dimension type

Rate Account
Contains currency rates.

RateSrc Entity

Category Category

Time Time

InputCurrency Currency
Stores currency rates for currency translation.

Advanced formulas

The ApShell Rate application has a standard default advanced logic that calculate divide or multiply rates
for currency translation.

The logic requires the following properties and members:

• The currency-type property must have a property named MD whole value is either "M" or
"D", which stand for Multiply currency and Divide currency. In the Apshell Rate
application, the currency-type dimension is named InputCurrency.

• The Entity-type dimension must have two members named RateInput and RateCalc. In
the ApShell Rate application, the Entity-type dimension is named RateSRC.

ApShell reports and input schedules

ApShell contains a set of sample reports and input schedules. They are located in the directories specified
below. You can put your own custom reports and schedules in these folders and add your own folders to
further organize the directories.

When a user selects to open an existing report in the Reporting & Analysis Options action pane in BPC
for Excel, it opens the Reports directory. For the ApShell application set and Finance application, this is:
x:/BPC/data/Webfolders/ApShell/Finance/eExcel/Reports/.

There are several folders in the Reports folder. Some are highlighted below:

Book Reports This folder contains sample reports to be used in book publication. All
reports to be used in book publication must be stored in this folder.
Please see BPC for Excel help for information on book publication. This
is an optional folder and is provided as a best practices example for
organizing your BPC folders.

HQ, Manager These folders contain sample reports. These are optional folders and
are provided as a best practices example for organizing your BPC
folders.

Wizard This folder contains report templates, Hot Analysis reports, and custom
menu templates. The Wizards folder is a required folder. Folders inside
this folder, such as HotAnalysis and ProcessMenu, are provided for
organizational and best practices purposes.

SAP Library: BPC Administration Guide

January 30, 2009 Page 16 of 217

For example, the ProcessMenu folder's contents could be placed
directly in the Wizard folder, but it would be hard to differentiate
custom menu templates files from regular dynamic template files.

When a user selects to open an existing schedule in the Data Input Options action pane in BPC for
Excel, it opens the Input Schedule directory. For the ApShell application set and Finance application, this
is: x:/BPC/data/Webfolders/ApShell/Finance/eExcel/Input Schedules/.

There are two folders in the Input Schedules folder. These are:

HQ, Manager These folders contain sample reports. These are optional folders and
are provided as a best practices example for organizing your BPC
folders.

Wizard This folder contains the dynamic input schedule templates.

SAP Library: BPC Administration Guide

January 30, 2009 Page 17 of 217

Managing Dimensions

Working with dimensions involves creating new dimensions, defining members, assigning properties, and
other tasks. BPC gives you a graphical view of your dimension members.

About Managing dimensions
You manage dimensions in an application set using the Dimension Library. The dimensions added to an
application set's Dimension Library can be added to one or more applications in the application set.

Required dimension types

Every application is required to have one dimension of each of the following types: Account, Category,
Entity, Time, Currency, and Intercompany. While a Currency-type dimension is required to be present
in all application sets for validation purposes, it does not have to be part of any applications within the
application set.

In addition, you can create user-defined dimension types as well, which are referred to in the system as
U1, U2, U3, and so on.

Note that an application set can have multiple dimensions of one type, but each application within the
AppSet can have only one of each of the required types. For example, the application set might have
entity type dimensions named EntityB and EntityF, with EntityB used in the Budgeting application and
EntityF in the Forecasting application.

The following table describes the required dimension types. Additional dimension types are described in
Adding dimensions.

Dimension type Type
ID

Definition

Account A Contains your chart of accounts.

See Account dimension required properties

Category C Contains the types of data you are going to track, such as Actual,
Budget, Forecast, etc. You can set up categories to store versions,
such as BudgetV1, BudgetV2.

See Category dimension required properties and Setting up a
legal consolidation application set

Entity E Contains the business units that are used to drive the business
process. Depending on your application design, the Entity type can
be an operating unit, a cost center, a geographic entity, etc. This
dimension will be used to supply the members that are used in the
Status Board approval process.

See Entity dimension required properties

Time T Contains the time periods for which you want to store data.

For a given Time dimension, you can create an unlimited number of
Time hierarchies with different LEVELS.

Note: We recommend that you create no more than three time
hierarchies for a dimension.

The Time hierarchies can have different starting points, configured
using the ISBEGINNING property (for instance, you may want one
hierarchy that follows a calendar year and another one that
represents the fiscal year).

See Time Dimension required properties.

SAP Library: BPC Administration Guide

January 30, 2009 Page 18 of 217

Dimension type Type
ID

Definition

Currency R Contains the currency rates for all currencies in which your company
does business. Required in the application set, but not in each
application.

See Currency dimension required properties and Setting up a
legal consolidation application set

Intercompany I The Intercompany dimension type contains the Intercompany codes
for the entities. It is required for ICmatching and Legal applications.

See Intercompany dimension required properties

About the Measures dimension

In addition to the dimensions listed above, BPC also requires a dimension called Measures. This
dimension is automatically included in all BPC application sets. It is not listed as a dimension-type when
you are creating new dimensions, but is displayed in the current view. Measures allow you to change the
view of your data. You can view Periodic, Half-year-to-date (HYTD), Quarter-to-date (QTD), Year-to-date
(YTD), Month-to-date (MTD), and Week-to-date (WTD) views of your data using the Measures dimension.

About securing dimensions

You can have a mixture of secured and unsecured dimensions in an application. Securing dimensions
allows you to control which users (or teams) have read only or read/write access to dimensions and their
members. You only need to define a dimension as secured if you want to assign read/write access to a
dimension. Unsecured dimensions are accessible to all users.

When defining access to secured dimensions, be sure to define access for all secured dimension in the
application. Failure to do so will result in an incomplete security profile for the user or team. If this
happens, users of a team will not be able to access the application at logon. For example, the application
Budget2006 has three secured dimensions, Entity, Account and Category. When defining member access
for the Analyst team you must define secured access for all three dimensions. If you define access for one
or two, the profile will be incomplete.

Setting application-level dimension security

You can define a dimension as secure for individual applications. If you want to restrict users from
accessing an entire application you must have at least one dimension secured in the application. For
information on setting security on dimensions, see Assigning dimensions.

Setting dimension member-level security

In addition to defining dimensions as secure, you can assign read/write access to members within the
dimension using member access profiles. Since by default, users do not have access to any members of a
secured dimension, member access profiles must be set up for the users you want to give read and/or
write access. For more information on member access profiles, see Adding member access profiles.

Maximizing levels and properties

When you are creating dimensions for your application set you should be aware of the following
maximums for any one dimension.

• The maximum number of fields in a table (a dimension = 1 table) is 1024.

• The maximum record size is 8064 bytes (a record = 1 row in a table)

The two maximums above relate to the underlying SQL database in which BPC information and data is
stored. They need further explanation as to how they relate to a BPC dimension. In BPC a field equals a
property. So you can have up to 1024 properties in a dimension. One other factor that has an impact on
the actual number of properties you can have in a dimension is the number of levels you have defined.
SQL Server creates a set of properties for each level within the dimension. For example, you have 10
properties and three levels in your dimension, your total number of fields is 30. The second limiting factor
is the size of the record. To determine record size you have to figure out the number of bytes (a byte
equals a character) in each level. Since levels are repeated you only need to figure out the number of
bytes in the first level and then multiply that number by the number of levels. To come up with the total
number of bytes for a level you simply add up the field size for each field and multiply it by 2 (1 character
= 2 bytes). The BPC field sizes are as follows:

• SEQ (hidden) = 6

SAP Library: BPC Administration Guide

January 30, 2009 Page 19 of 217

• ID = 20

• EVDESCRIPTION = 50

• CALC = 1

• SCALING = 2

• ALL User defined properties = 10

You have the ability to control the length of the user-defined properties to meet your needs. For more
information on changing the length of a property, see Adding properties to dimensions.

The real variable is the number of additional properties a dimension contains, as it has a direct impact on
both the record size and the number of fields in a table. For more information on the maximum and
recommended number of dimensions, see Database specifications.

Adding dimensions
You add dimensions to the Dimension Library of an application set to make them available for your
applications. You can use any name you want for a dimension with the following exceptions:

• You cannot name a dimension after an existing BPC database table.

• You cannot use these reserved names.

To add a dimension

1. From the Admin Console, select Dimension Library under the appropriate application set.

2. From the Manage Dimensions action pane, click Add a new dimension.

3. Enter a name for the dimension. The name can be up to 20 characters and cannot contain single
quotation marks ('), double quotation marks ("), backslashes (\), or ampersands (&).

4. Enter a description for the dimension, then click Add a new dimension Step 2 of 3. The
description can be up to 50 characters and cannot contain a double quotation mark (").

5. Select the dimension type from the Dimension Type drop down list. The dimension type
controls the behavior of the dimension and the default properties included in the dimension. See
About managing dimensions. The type can be:

• A - Account

• C - Category

• E - Entity

• D - Data Source

• I - Intercompany

• R - Currency-type dimension

• S – Subtable (Used to break down the account activity or flow. For example, some
accounts, like Fixed Assets, have a Subtable dimension containing Opening, Additions,
Deletions, Transfers and Ending Balances. The Subtable type dimension is important for
writing business rules that require currency translation amounts to be calculated by
account. Since the Subtable information can be used for multiple accounts, it requires
its own dimension.)

• T - Time

• U - User defined

6. Based on your selection in step 5, select a reference dimension, then click Add a new
dimension step 3 of 3.

7. Review the dimension properties, and add new ones if desired. See Assigning properties to a
dimension.

8. Select Execute.

SAP Library: BPC Administration Guide

January 30, 2009 Page 20 of 217

Copying dimensions
You can create a new dimension by copying an existing one.

You cannot use any of the following terms as dimension names:

App, AppAccess, AvlObject, CategoryAccess, CollabDoc, CollabIcons, CollabRecipient, CollabSupport,
 CollabType, DBVERSION, Defaults, DesktopStyleDef, Dimension, DrillDef, DTIParam, Function, Formula,
Group, InvestParam, MemberAccess, MessageLog, Packages, PageDef, Permission, PublishedBooks, Rate,
ReportParam, SectionDef, Status, StatusCode, TaskAccess, User, UserGroup, UserPackages, UserPovDef,
WebContents, SOURCE, SIGNEDDATA

In addition, you cannot name a dimension after an existing BPC database table.

To copy a dimension

1. From the Admin Console, expand the application set from which you want to copy a dimension.

2. Expand Dimension Library, then select the dimension you want to copy.

3. Enter a name for the dimension in the Dimension text box. The name can be up to 20
characters and cannot contain a space (), single qotation mark ('), a double quotation mark ("),
or a backslash (\).

4. Enter a description in the Description text box, then click OK. The description can be up to 50
characters and cannot contain a double quotation mark (").

5. Select the dimension in the tree on the left to modify its members or properties. See Adding
members to dimensions and Maintaining dimension properties.

Processing dimensions
After you add a new dimension or make changes to a dimension, you must process it. Processing occurs
automatically after you create or modify a dimension, so you only need to perform this procedure when
you need to manually process dimensions. Modifying the member table requires that you manually
process dimensions.

When you process a new dimension, the system constructs a map of the dimension in Analysis Services.
This sets up the entire hierarchy, so that the dimension is easy to find upon querying the application. In
addition, processing a new dimension sets up a member table with some default properties. For
information about adding members to a dimension, see Adding members to dimensions. When you
process an existing dimension, the system stores the changes in the database.

Certain changes to a dimension forces the system to process the entire application. For information on
processing applications, see Processing applications.

You can schedule the processing of dimensions. See Scheduling dimension processing.

To process dimensions

1. From the Admin Console, select Dimension Library.

2. From the Manage Dimensions action pane, select Process dimensions. The Process
Dimensions dialog box is displayed. (If you selected one or more dimensions under Dimension
Library, those dimensions will be preselected.)

3. Select the dimensions you want to process. To select all the items, press Select all dimensions.

4. To perform a full process, select the Full Process check box. A full process processes all the
members in the dimension. See Full vs. incremental processing.

5. When all the desired items are selected, click OK to complete the dimension processing.

Exporting Dimensions
You can export dimensions from BPC to an MS EXCEL workbook on a central repository. You can use the
exported workbook to make changes to the dimension’s members. These changes take effect in BPC once
the dimensions are processed.

See Processing Dimensions.

SAP Library: BPC Administration Guide

January 30, 2009 Page 21 of 217

To export dimensions

1. From the Admin Console, select Dimension Library.

2. From the Manage Dimensions action pane, select Export dimensions.

Note: If the number of exported members is greater than MS EXCEL’s worksheet row limitation, the
workbook will create additional worksheets as needed.

Scheduling dimension processing
You can validate your changes to dimensions, and schedule the processing for another time. The schedule
can be set up to run once or on a recurring basis. The validation is done in the Admin Console, but the
scheduling is done in Data Manager.

See Scheduling dimension member processing in the Data Manager Help.

To schedule dimension processing

1. From the Admin Console, select Dimension Library under the appropriate application set.

2. From the Manage Dimensions action pane, select Process dimensions. The Process
Dimensions dialog box is displayed.

3. Select the check box for scheduling dimension processing, then click OK.

4. Follow the procedure for Scheduling dimension member processing in the Data Manager Help.

Maintaining dimension members
You maintain dimension elements by adding and modifying members associated with a particular
dimension.

About maintaining dimension members

You maintain dimension members by adding and modifying members associated with a particular
dimension.

You add members to dimensions based on your business needs. For example, your company may open a
new office, and that office's financial information needs to be reflected in the Entity, Category, and
Currency dimensions.

When you create a new dimension, the system creates a template for that dimension. Based on the
dimension type, the template contains a set of predefined properties, such as ID, NEWID, DESCRIPTION,
PARENTH1, PARENTH2, CURR and OWNER.

You can also add new members, new properties, and assign dimension formulas that calculate and store
information based on member values. In addition, please note the following:

• If you are starting from the sample application set, ApShell, and editing a dimension
member for the first time, you must delete all of the sample members. You can do this
using Excel functionality.

• The dimension member sheet is contained in an Excel worksheet that you can modify using
Excel functionality. Therefore, it is possible to change the name of the sheet. However, you
must not change the name of the first sheet from Member, or it will not work correctly.

• Some properties are required, depending on the dimension you are editing. See Adding
properties to dimensions.

• Special characters and spaces are not supported in member IDs. Underscores (_) and
periods (.) are allowed.

• The following are reserved names and cannot be used as member names:

• AUX

• COM1, COM2, COM3, COM4

• CONS

• LPT1, LPT2, LPT3, LPT4

• PRN

SAP Library: BPC Administration Guide

January 30, 2009 Page 22 of 217

• The member ID field is limited to 20 characters.

Adding members to dimensions

You can add a single member or multiple members to a dimension. Typically, when setting up your
system, you load bulk members into a dimension by entering the metadata from an existing source. For
example, using Excel, you can open an existing spreadsheet, and use copy/paste to transfer the members
from the source file to the member sheet. With subsequent additions, you can type a member and its
properties in the appropriate row.

This topic describes the process of adding a single member at a time.

For a list of reserved member names, see About maintaining dimension members.

To add members to dimensions

1. From the Admin Console, select Dimension Library under the appropriate application set.

2. Select the dimension for which you want to add a member, then select Maintain dimension
members.

3. In the first empty row, type the name of the member and properties in the appropriate columns,
or paste the contents of the clipboard into the sheet if doing a bulk load.

4. After you have entered the desired members, click Process Dimension. Make sure that
Process members from member sheet is selected.

5. If you made changes to any rules in the dimension, such as added a new formula, you must
validate and save those rules.

Changing member names

You can rename members using the NEWID property. NEWID is a required property in all dimensions.
Note that if you type the new name in place of the existing name in the ID column, you will receive
errors. You must use the NEW ID column.

For a list of reserved member names, see About maintaining dimension elements.

To change a member name

1. From the Admin Console, select Dimension Library under the appropriate application set.

2. Select the dimension for which you want to add a member, then select Maintain dimension
elements.

3. Find the member you want to rename, and enter the new member name in the NEWID field.
(Remember that the ID field is limited to 20 characters.)

4. After you enter the new member names, validate and process those members. See Validating
and processing members.

Validating and processing members

After you create or make changes to members in a dimension, you must validate and process the
members in order to have the changes reflected in your application and throughout BPC. The validation
process reviews the members for errors, and allows you to build each dimension and process the database
(the Analysis Services application).

To validate and process members

1. From the Admin Console, select the dimension (under Dimension Library) that contains the
member you modified, and want to validate and process.

2. From the Manage Dimensions action pane, select Process dimension.

3. In the Process Dimensions dialog box, select the Process members from member sheet
check box.

4. Select the Full Process check box to run a full process on the dimension(s), then click OK. (If
you do not select this and a full process is required, BPC detects it and runs the full process
anyway.) See Full vs. incremental processing.

SAP Library: BPC Administration Guide

January 30, 2009 Page 23 of 217

Full vs. incremental processing

When processing dimensions and members, BPC decides what type of processing (Full vs. Incremental) to
perform based on the changes that have been made to the dimension. At any time, you can override the
system-detected process option by forcing a full process of a dimension.

Full: The system performs a full process of a dimension when a property is added to the dimension, a
member is inserted in the middle of the worksheet, and when a change is made to the parent/child
relationships (if the dimension has a hierarchy).

Incremental: The system performs an incremental process of the dimension when changes are made
that do not affect the structure of the dimension, like editing a formula, adding a property value, or adding
base-level members to the end of the worksheet. If any of the applications in the Process Application
list are selected, and the dimension only needs incremental processing, applications WILL NOT be
processed if they do not need processing.

Viewing member reports

Member reports show your hierarchies in a tree structure. A member report is added as a new sheet
named Print in your dimension workbook. After you generate a report, your workbook is placed in print
preview mode for the member report.

For more information about member reports, see Adding Members to Dimensions.

To view a member report

1. From the Admin Console, log on to the appropriate application set.

2. Under Dimension Library, select the dimension that contains the member for which you want to
view a report.

3. Select Maintain Dimension Elements from the action pane.

4. Select the hierarchy or hierarchies you want in the report.

5. In the Select Description section, select which properties you want in the report.

6. Click the OK button to generate the member report.

7. Click the Print button on the print preview screen to print the report, or click the Close button.
The new sheet containing the report, named Print, is visible in the workbook.

Assigning dimensions to applications
After you add dimensions to the Dimension Library, they are available as shared dimensions in the
application set, and can be assigned to applications. You assign them to applications in order to make the
data from those dimensions available in your application.

About assigning dimensions

After you create dimensions, they are available as shared dimensions in the application set, and can be
assigned to applications.

Each dimension has a "type" associated with it. For example, type "A" is an Account-type dimension. Each
application must have at least one of each of the following dimension types assigned to it: Account (A),
Category (C), Entity (E), and Time (T). If you want to assign additional user-defined dimensions (type U)
to an application, they are assigned sequential numbers: U1, U2, etc. For more information on dimension
types, see About managing dimensions.

Please note the following:

• Use caution when adding or removing dimensions from an application that already contains data.
We recommend that you only assign dimensions to new applications that do not contain data. If
you do add a dimension to an application with data, the system finds the first base member
(alphabetically), and loads it into the fact tables. This means that the all the application's data
will be written to that member. (To move the data to a different member, you can run a DTS
Move package. See Data Manager Help.) Removing a dimension from an application with data will
cause a loss of data.

• Before assigning a dimension to an application, make sure it has at least one member defined,
and you have validated and processed the dimension. Otherwise, an error message is displayed
when you attempt to save the application, stating that the dimension has no members. See
Adding members to dimensions

SAP Library: BPC Administration Guide

January 30, 2009 Page 24 of 217

• In the rare case that you have two application sets on the same server, and administrators
attempt to save applications from multiple application sets at the same time, one or both of the
administrators may receive an error message that they do not belong to the OLAP Administrator
group. To work around this issue, try to save applications in one application set at a time.

Assigning dimensions

Use this procedure to assign a dimension to an application. Note that each dimension has an associated
type. Each application must have at least one dimension of the four required types, Account (A), Category
(C), Entity (E), and Time (T). For more information on dimension types, see Adding dimensions.

You can also determine if dimensions are secured and/or read/write using this procedure.

To assign a dimension to an application

1. From the navigation pane in the Admin Console, select the application to which you want to
assign dimensions.

2. Select Modify Application from the action pane.

3. The Shared Dimensions area shows all the dimensions for the application set. Select one or
more of those dimensions and click one of the arrow buttons (‘<’, ‘>’, ‘<<’, or ‘>>’) to move
them to the Application Dimensions area.

4. For any given dimension assigned to the application, you can secure the dimension by clicking on
the dimension and the clicking on the Secured button at the bottom of the window. A Y is
displayed in the Secure column for secured dimensions. (Click the Secured button again to
unsecure a selected dimension.)

5. For any given dimension assigned to the application, you can grant read/write access to the
dimension by clicking on the dimension and clicking on the R/W button at the bottom of the
window. If you grant read/write access, the dimension automatically becomes secured. If you
have a secured dimension and Read/Write access, disabling Read/Write will not unsecure the
dimension automatically; you will have to unsecure the dimension additionally.

Removing dimensions from applications

You can remove dimensions from applications. This is not recommended if this application already
contains data.

To remove a dimension from an application

1. From the navigation pane in the Admin Console, select the application to which you want to
remove dimensions.

2. Select Modify Application from the action pane.

3. From the Application Dimensions area, select one or more dimensions to remove, then use the
arrow buttons (‘<’, ‘>’, ‘<<’, or ‘>>’) to move them to the Shared Dimensions area.

4. When done removing dimensions, click the Modify Application link from the action pane.

Using dimension properties
Dimension properties are categories that are assigned to dimensions. Many of the categories are generic,
such as ID and EvDescription, and others can be unique to a dimension, such as Reviewer and Scale. You
use these categories to define the behavior of members within the dimension.

About dimension properties

Based on their assigned type, dimensions are assigned default properties, some of which are required. You
can add more properties to further customize your dimension members. The following table describes
several of the general dimension properties. These are required for each dimension.

Property Description

ID A user-defined ID for the property. Each ID must be unique within the dimension.
Although you can use the same ID in different dimensions, we highly recommend

SAP Library: BPC Administration Guide

January 30, 2009 Page 25 of 217

Property Description

that you use unique IDs across dimensions. If you need to duplicate an ID in
multiple dimensions, consider making it unique by prefacing the IDs with a letter
representing its dimension.

ID can be up to 20 characters and can not contain the following special
characters:

• Single quotation mark (')
• Double quotation mark (")
• Backslash (\)

When renaming a dimension after data has been entered into the application, you
must add a property called 'NEWID'. Simply typing the new name over the
existing name in the ID column will result in errors. When you validate and
process the dimension, the old ID is renamed to the NEWID, and data and Content
Library documents from the original ID will be assigned to the NEWID. A log sheet
is kept of the ID changes. Note: MDX formulas that have been defined for any
dimensions are not updated with the NEWID; they must be updated manually.

EVDESCRIPTION A user-defined description for the property. EVDESCRIPTION has the following
constraints:

• Can be up to 50 characters

• Descriptions do not need to be unique

• Cannot contain " (double quotation)

GROUP A user-defined identifier for providing additional filtering options. By grouping
members with your dimensions you can sort and filter with more flexibility. Values
are optional.

STYLE A user-defined identifier for denoting different formatting applied using Excel's
conditional formatting. Values are optional. See Creative use of properties.

Note: There are two system-generated properties: HLEVEL and CALC. HLEVEL denotes the member's
hierarchical level. CALC indicates whether or not the account is calculated by means of a formula
or is at a parent level. The property values for these items can be viewed in the Member Selector
in BPC for Excel.

Adding properties to dimensions

By assigning properties to dimensions, you can implement very powerful features in your reporting,
member lookup, formulas, portable data selections, Data Manager selections, and so on.

You can filter on properties in many places in BPC. For example, if you want to be able to easily select
entities by geographic region, you simply add a Region property and enter a region value for each entity.
Then you can filter and sort by region, apply account logic by region, or define a report format based on
region.

BPC requires various properties depending on the dimension, as described in the 'required properties'
topics. You can also assign additional properties for your business needs.

The default number of characters for user defined properties is 10, but you can change the length to meet
your needs. The length of properties has an impact on the number of additional properties and levels you
can have in a dimension. By making property lengths accurately reflect the actual length you need, you
can maximize the number of levels in the dimension or the size of other properties (such as Formula).

You can store additional properties in either the SQL or Analysis Services databases by selecting or
deselecting the InApp checkbox while adding a property. Storing dimension properties in the SQL
database gives you better performance. However, you cannot store properties in SQL that you will need in
dynamic expansions or other MDX-type queries, such as from Dimension formulas. Properties that are
referred to in MDX-type queries must exist in the application database. The system will not allow you to
move required properties to SQL. For other properties, you need to know whether you will query the
properties using MDX-type queries.

SAP Library: BPC Administration Guide

January 30, 2009 Page 26 of 217

Note: Required properties must be stored within an application. Also, if you plan to query on a property
from a dimension formula or from a dynamic expansion, you must store that property in the
application (leave the InApp check box selected).

To add properties to dimensions

1. From the Admin Console, select Dimension Library.

2. Select the desired dimension.

3. Go to a blank line at the bottom of the property list and type the new property ID.

4. Select or deselect the InApp checkbox.

5. Click the Save button. While saving the dimension, BPC checks the length of the dimension
records and the number of levels to ensure they are within the system maximums. Property
names appear as column headings on the Member Sheet for a dimension. When you save the
dimension after new properties have been added, columns are added to the Member Sheet for
the new properties.

Note: You can keep columns on a member sheet that are not related to properties. These columns can
be for your information only, and are ignored when the system validates and processes the
member sheet.

Maintaining dimension properties

You maintain dimension properties by adding new properties to a dimension, and specifying whether a
property is saved in the OLAP cube. After you add a property to a dimension, you can assign property
values to members in the dimension. See Maintaining dimension members.

You can also delete dimension properties, as long as they are not required.

If a property is saved in the OLAP cube, you can write MDX queries using that property. This may increase
the cube size significantly. So if you do not need to write MDX queries against a property, you should
leave the InAPP check box unselected.

To add a dimension property (or change its InApp value)

1. From the navigation pane in the Admin Console, select Dimension Library, then select the
dimension to which you want to add that property or change its InAPP value.

2. Select Maintain dimension properties from the action pane.

3. To add a new property, enter the name of the property in the empty field at the bottom of the
list. In the adjacent text box, enter the maximum alpha-numeric size of the property values.

4. To store the property values in MDX, select the InApp check box for the appropriate property
name. If you do not want to store the property values in MDX, deselect the InApp check box
next to the appropriate property name.

5. When you are done with your changes, click the Modify Dimension Properties link in the
action pane.

To delete a dimension property

1. From the navigation pane in the Admin Console, select Dimension Library, then select the
dimension whose property you want to delete.

2. Select Maintain dimension properties from the action pane.

3. Delete the property name from the middle column.

Using the Owner property

The "Owner" property is used when you are using the work status feature. You add the property to the
dimension that drives the work status flow. For example, if your business process dictates that an entity is
the differing factor when it comes to entering data, then the Entity-type dimension is the work status
driving dimension. If your business process dictates that a department name is the differing factor, then
Department dimension would have the Owner property.

The dimension you select to drive work status must have more than one hierarchy.

SAP Library: BPC Administration Guide

January 30, 2009 Page 27 of 217

The Owner property takes user and team names as values. You can enter multiple names and teams
separated by commas. You must also include the domain or server name in the path.

The following example shows different user names and teams used in the Owner property of the Entity
dimension. It demonstrates that HHATCHER is the owner of the Sales member, and can change the work
status associated with Entity:Sales. However, the work state setting that is applied must also be
'controlled by' the owner. See Changing work status settings for applications.

A D E F G

1 ID PARENTH1 PARENTH2 CURRENCY OWNER

2 Worldwide1 USD BPC\Administrator

3 Sales Worldwide1 USD BPC \HHATCHER

4 RD Worldwide1 USD BPC \TJONES

5 Manufacturing Worldwide1 USD BPC \RSMITH

6 CorpCenters Worldwide1 USD BPC \CorpTeam1

7 CorpCenters2 OtherRegions USD BPC \CorpTeam2

'Managers' are the owners of the parent member. Since Worldwide1 is the parent of Sales and the
Administrator user is the owner of Worldwide1, the Administrator user can change the work status
setting for both Worldwide1 (only when all the children have been changed) and Sales. However, the
work state setting that is applied must also be 'controlled by' the manager. See Changing work status
settings for applications.

Account dimension required properties

The Account-type dimension defines the chart of accounts for your application, and how those accounts
are calculated and aggregated. Any dimension that is assigned the type 'A' is considered an Account-type
dimension. Each application must have one (and only one) Account-type dimension.

An Account-type dimension has the following required properties:

Property name Description

ID A user-defined member ID.

See About dimension properties

NEWID Used when you need to rename an existing member ID.

See About dimension properties

EVDESCRIPTION A user-defined description for the member.

See About dimension properties

PARENTH1 Parent, Hierarchy 1. PARENTH1 is only required if you want to define a
hierarchy. You can add additional PARENT properties to define parents for
additional hierarchies, such as PARENTH2, PARENTH3, etc. We recommend that
you use hierarchies rather than formulas to define subaccounts.

See About dimension properties

GROUP A user-defined identifier for providing additional filtering options.

See About dimension properties

FORMULA If you have a hierarchy of accounts and children are calculated using a formula,
the parent must have a formula which defines the aggregation of its children in

SAP Library: BPC Administration Guide

January 30, 2009 Page 28 of 217

Property name Description

order to aggregate properly.

You can include library files for use in dimension formulas on the Options sheet
of the account dimension. ApShell includes the system functions in MDXLIB.LGL
and the CONSTANTS.LGL file.

ACCTYPE The account type: can be INC for Income, EXP for Expense, AST for Asset, LEQ
for Liabilities & Equity

SCALING Scaling options are Y or N. Used by EvDRE and live reporting. Value is optional,
but if value is not defined, scaling is not available for the associated member ID.

RATETYPE Used by the currency conversion business rules. Value is optional.

See Currency conversion business rules

ELIMACCT Valid account names.

See About intercompany eliminations

Optional properties

• FINSTMT is a user-defined property in ApShell used to sort expansions by financial
statement, such as Income Statement vs Balance Sheet. This property is optional.

• TEMPLATE is a user-defined property in ApShell used to sort input schedules. This property
is optional.

Category dimension required properties

The Category dimension defines the 'buckets' in which you store information in your application. Typical
categories would be Budget, Actual, Forecast, and so on. Any dimension that is assigned the type 'C' is a
Category dimension. Each application must have one (and only one) Category-type dimension.

A Category type dimension has the following required properties:

Property name Description

ID A user-defined member ID.

See About dimension properties

NEWID Used when you need to rename an existing member ID.

See About dimension properties

EVDESCRIPTION A user-defined description for the member.

See About dimension properties

HLEVEL A system-generated property. It denotes the member's hierarchical level. The
property values can be viewed in the Member Lookup in BPC for Excel.

CALC A system-generated property. It indicates whether or not the account is
calculated by means of a formula or is at a parent level. The property values can
be viewed in the Member Lookup in BPC for Excel.

STYLE A user-defined identifier for denoting different formatting applied using Excel's
conditional formatting.

See About dimension properties

YEAR Used to assign a YEAR to the category, to be used with the EVGET and EVTIM
functions in reporting. See the BPC for Excel for more information.

SAP Library: BPC Administration Guide

January 30, 2009 Page 29 of 217

Currency dimension required properties

The currency type dimension is required if your company reports on local currency and translated values.
These dimensions store the reporting and input currencies for your organization. Any dimension that is
assigned the type 'R' is a Currency-type dimension.

The following table describes a Currency dimension's required properties. If you are utilizing BPC's legal
consolidation functionality, there are additional properties required for the Currency-type dimension. See
Setting up a legal consolidation application set.

Property name Description

ID A user-defined member ID.

See About dimension properties

NEWID Used when you need to rename an existing member ID.

See About dimension properties

EVDESCRIPTION A user-defined description for the member.

See About dimension properties

PARENTH1 Parent, Hierarchy 1. PARENTH1 is only required if you want to define a
hierarchy. You can add additional PARENT properties to define parents for
additional hierarchies, such as PARENTH2, PARENTH3, etc. We recommend that
you use hierarchies rather than formulas to define subaccounts.

See About dimension properties

REPORTING This property is used to specify your reporting currencies. If Y, this member is
used for reporting purposes.

GROUP A user-defined identifier for providing additional filtering options.

See About dimension properties

STYLE A user-defined identifier for denoting different formatting applied using Excel's
conditional formatting.

See About dimension properties

MD MD is a property of the INPUTCURRENCY dimension from the Rate application. It
is used to determine how the rate is calculated.

M: Multiply

D: Divide

SCALE The number of digits to the right of the decimal point that should be displayed
for a currency.

Entity dimension required properties

The Entity dimension defines the business units for your application, and how those units aggregate. Any
dimension that is assigned the type 'E' is a Entity dimension. Each application must have one (and only
one) Entity-type dimension.

The Entity dimension defines the organizational structure, which drives the process of submitting and
approving data.

For information about required properties for all dimensions, see Adding dimensions.

An Entity dimension has the following required properties:

Property name Description

ID A user-defined member ID.

See About dimension properties

SAP Library: BPC Administration Guide

January 30, 2009 Page 30 of 217

Property name Description

NEWID Used when you need to rename an existing member ID.

See About dimension properties

EVDESCRIPTION A user-defined description for the member.

See About dimension properties

PARENTH1 Parent, Hierarchy 1. PARENTH1 is only required if you want to define a
hierarchy. You can add additional PARENT properties to define parents for
additional hierarchies, such as PARENTH2, PARENTH3, etc. We recommend that
you use hierarchies rather than formulas to define subaccounts.

See About dimension properties

CURR The currency used by the entity.

See About currency conversions

HLEVEL A system-generated property. It denotes the member's hierarchical level. The
property values can be viewed in the Member Lookup in BPC for Excel.

STYLE A user-defined identifier for denoting different formatting applied using Excel's
conditional formatting.

See About dimension properties

CALC A system-generated property. It indicates whether or not the account is
calculated by means of a formula or is at a parent level. The property values can
be viewed in the Member Lookup in BPC for Excel.

SCALE The number of digits to the right of the decimal point that should be displayed
for a currency.

Intercompany dimension required properties

An Intercompany dimension has the following required properties:

Property name Description

ID A user-defined member ID.

See About dimension properties

NEWID Used when you need to rename an existing member ID.

See About dimension properties

EVDESCRIPTION A user-defined description for the member.

See About dimension properties

HLEVEL A system-generated property. It denotes the member's hierarchical level. The
property values can be viewed in the Member Lookup in BPC for Excel.

STYLE A user-defined identifier for denoting different formatting applied using Excel's
conditional formatting.

See About dimension properties

CALC A system-generated property. It indicates whether or not the account is
calculated by means of a formula or is at a parent level. The property values can
be viewed in the Member Lookup in BPC for Excel.

ENTITY This is a 20 character field that can either be left blank or contain a valid

SAP Library: BPC Administration Guide

January 30, 2009 Page 31 of 217

Property name Description

member name of the Entity dimension associated to the current application. The
ENTITY property is validated against the Entity dimension, and blank fields are
allowed.

Time dimension required properties

The Time dimension defines the units of time for your application, and how those units aggregate. Any
dimension that is assigned the type 'T' is a Time dimension. Each application must have one (and only
one) Time type dimension.

A Time dimension has the following required properties:

Property name Description

ID A user-defined member ID. Its format is YEAR.PERIOD, for example, 2001.JAN or
2001.Q1.

See About dimension properties

NEWID Used when you need to rename an existing member ID.

See About dimension properties

EVDESCRIPTION A user-defined description for the member.

See About dimension properties

TIMEID Needed to change the ID members into the time format required for Analysis
Services.

USERTIMEID USERTIMEID is used to define a new 'user defined' TIMEID. The TIMEID is an
internally assigned ID that converts the ID into an all numeric format for use in
the SQL database.

You can define your own TIMEID by specifying a USERTIMEID. If a USERTIMEID is
specified, BPC will assign it to the TIMEID. Note that the new TIMEID must follow
a logical naming convention so that the months, years, etc. are identified
correctly.

The property column must follow the TIMEID property column or you get an error
message when the system processes the Time dimension.

ParentH1 PARENTH1 is used for defining the parent of each member in Hierarchy 1. Having
hierarchies in the Time dimension allows you to define how you want time periods
to aggregate.

You can have multiple hierarchies within a Time dimension. You do this by adding
additional PARENTHn columns to and then defining the parents for the additional
hierarchies.

YEAR The YEAR property allows you to do filtering, sorting, and reporting based on the
year. The YEARs should be placed in chronological order in the file, in order for the
EVTIM function in BPC for Excel to give offsets correctly.

PERIOD The PERIOD property allows you to do filtering, sorting, and reporting based on
the period.

SAP Library: BPC Administration Guide

January 30, 2009 Page 32 of 217

Property name Description

LEVEL Time can be a year, quarter, month, week or day. As described above, the
PARENTH1 property is used to define the aggregation of the time periods.

The LEVEL property is also very important in defining your time periods. You must
have the correct Level (Year, halfyear, quarter, month, etc.) for each member.
You must follow the chronological format throughout the Time dimension. The
correct format is:

• YEAR

• HALFYEAR

• QUARTER

• MONTH

• WEEK

• DAY

ISBEGINNING This value should be set to 1 for periods that correspond to the beginning of a
year (such as Q1 or January, for instance) in all Time dimensions that incorporate
YTD calculations. Set this value to 0 for all other periods.

HLEVEL A system-generated property. It denotes the member's hierarchical level. The
property values can be viewed in the Member Lookup in BPC for Excel.

Creative use of properties

This section demonstrates how you can use properties to help format your reports and input schedules.
Set up a report this way:

• Add a Style property to Accounts.

• For input-level accounts, enter a Style value of N (no style).

• For the highest level totals, enter a Style of T1. For the next level of totals, enter a Style of T2.
You can have as many levels as you want: T3, etc.

• In reports, for each account, retrieve the Style property in the report definition area, using the
EVPRO function.

• Use Excel's conditional formatting to define formatting that varies depending on the Style
property retrieved for that row.

Special optional properties

The following optional properties are available for use in any dimension:

• Formula — Allows you to define formulas for dimensions.

• SolveOrder — Use this property to define the order in which calculated members are solved in
the case of intersection with other calculated members. Zero is the highest priority. Solve Order
determines the order in which dimensions, members, calculated members, custom rollups, and
calculated cells are evaluated, and the order in which they are calculated. The member with the
highest solve order is evaluated first, but calculated last.

• UnaryOperator — Use this property to control how member values are rolled up to their
parent’s values. The following table describes each operator.

Operator Description

+ The value of the member is added to the aggregate value of the preceding sibling
members.

- The value of the member is subtracted from the aggregate value of the
preceding sibling members.

SAP Library: BPC Administration Guide

January 30, 2009 Page 33 of 217

* The value of the member is multiplied by the aggregate value of the preceding
sibling members.

/ The value of the member is divided by the aggregate value of the preceding
sibling members.

~ The value of the member is ignored.

SAP Library: BPC Administration Guide

January 30, 2009 Page 34 of 217

Managing Applications

An application in BPC is a functional unit used for a specific purpose, such as a Budgeting application or a
Management Reporting application.

About working with applications
Applications can share some dimensions with other applications within the same application set, and can
have some dimensions that are unique to that application. In Microsoft Analysis Services, an application
equates to a cube; that is, there is one Analysis Services cube for each application.

You can create new applications, save applications, delete applications, and change application
descriptions.

Adding new applications
You add a new application to an application set by copying the structure of an existing application. The
structure includes an application's dimensions, data, and templates. When creating a new application, you
must choose an application type, which tells the system which properties to associate with the application.
 An application is either a reporting or non-reporting application.

Reporting applications

The following table describes the different types of reporting applications available.

Type Description

Financial Financial-type applications allow you to perform management
consolidation functions. They support data translations from local
currencies to one or more reporting currencies, intercompany
elimination calculations, and other calculations.

When you create a Financial-type application, you must choose an
associated Rate-type application (see below). You can also choose to set
up the following business rules tables:

• Currency conversion
• Account transformation
• Intercompany Bookings
• US Eliminations
• Carry-forward rules
• Validations

Consolidation The Consolidation-type application allows you to perform legal
consolidation functions. It is similar to a Financial-type application, but
with legal consolidation rules instead of management consolidation rules.

Consolidation-type applications must reference an Ownership-type
application and a Rate-type application.

You can also choose to set up the following business rules tables:

• Currency conversion
• Account transformation
• Intercompany Bookings
• US Eliminations
• Carry-forward rules
• Validations
• Automatic Adjustments

Generic A generic-type application has no special requirements (other than to
include the four minimally required dimensions). Generic applications
have no out-of-the-box business intelligence, so if you want to apply
logic, you must create it using BPC 's script logic.

SAP Library: BPC Administration Guide

January 30, 2009 Page 35 of 217

Non-Reporting applications

Non-reporting applications are designed to support reporting applications or to simply hold data, such as
price or rate information. You can report on non-reporting application data, but you cannot view its data in
an Insight dashboard, or assign work status codes to the data. In addition, you cannot define business
rules to these application types. As with Reporting applications, non-reporting applications require four
dimension-types: Entity, Account, Time, and Category.

The following table describes the available non-reporting type applications.

Type Description

Rate A rate application is a supporting application for one or more Financial or
Consolidation reporting-type applications. It is used to store exchange
rates that support currency conversion in financial applications.

This application must include a Currency-type dimension detailing the
exchange rates by each individual input currency.

Ownership The ownership application is a supporting application for a Consolidation
reporting-type application. It stores information such as the
consolidation methods, ownership percentages, and group rollup
information used for legal consolidation.

Generic A generic application has no special requirements (other than to include
the four minimally required dimensions). Generic applications have no
out-of-the-box business intelligence, so if you want to apply logic, you
must create it using BPC's script logic.

To create a new application

1. From the Admin Console, select Applications.

2. Select Add new application from the action pane.

3. Enter a name and description, and then click Go to Step 2 of 4.

4. Select the application type, then click Go to Step 3 of 4. (See table above for descriptions.)

5. Select a source application from the list. If you selected Financial or Consolidation as the type,
select the corresponding Rate and Ownership applications and the business rules tables you
want to use.

6. Select what to copy from the source application. You can choose to copy all options from the
source application, or just some of the options. Options you can copy include: Dimensions,
Application publications, Private Publications, Content Library, Reports, Team tasks,
Data Manager Packages, and Journals. Make your selection(s), and then click Add New
application.

Note: The report templates used when you use "New" to create an application are located on the server
in the following directory: \BPC\WebFolders\<AppSet><AppName>\AppTemplate\eExcel

7. If you deselected the Dimensions option, move the dimensions you want to copy from the
source application on the left side to the right side. Click Add a new application.

Note: You must select one of each of the required dimension types before continuing. Required
dimensions types include Account (A), Category (C), Entity (E), and Time (T). See Required
dimensions in applications.

8. When processing is complete, click OK.

About the Rate application
A rate application is a supporting application for one or more Financial or Consolidation reporting-type
applications. It is used to store exchange rates that support currency conversions in those applications.

A Rate application has the following characteristics:

• The RATE application contains the usual required dimensions (Category, Time, Entity, and
Account), and one Currency dimension.

SAP Library: BPC Administration Guide

January 30, 2009 Page 36 of 217

• The Category and Time dimensions must be identical to the dimensions used by the applications
using this application to store their foreign currency exchange rates.

• The Account dimension must include the GROUP property.

• The Currency dimension does NOT need to have the REPORTING property.

Copying applications
You can copy an application as a quick way of creating a new application. When you copy an application,
its dimensions, data, and templates get copied from the source application. You can modify the application
later.

To copy an application

1. From the Admin Console, select Application.

2. Select Copy an application from the action pane.

3. Select the name of the source application, and then enter the name of the new application.

4. Select Copy an application.

5. When the progress indicator completes, click OK.

Changing work status settings for applications
You can change the work status settings for each application. Changing the work status settings involves
identifying three to five 'work status dimensions,' and then defining specific members for the remaining
non-work status dimensions used for validation purposes. You must determine which account you will use
for validation of the data at the time the work status is changed. The validation account must be “0” at the
intersection of the 3-5 variable members and the members designated for the non-work status
dimensions. If the account is not “0” then the owner/manager cannot set the work status.

The dimensions you select as the work status dimensions are the variables in your business process. For
example, the entity, category, and time might change based on who is submitting data, but the account,
data source, reporting currency, etc., remains static. (Typically, Time is a work status dimension since
data is usually segregated based on time.)

For example, lets say that you set Entity, Category, and Time as your work status dimensions for a
given application. You then set your other current view members to the following: Account: Validation;
DataSrc: TotalAdj; Intco: All_Intco; and RptCurrency: LC. In addition to assigning work status
dimensions, you also specify which dimension is the 'owner dimension.' The owner dimension includes the
Owner property. The owner property determines who can edit a work status setting. The following figure
shows this setup, where Entity is the Owner dimension.

AppSet Dim Name Work State Member Validation

Account No VALIDATION

Category Yes

DataSrc No TotalAdj

Entity Owner

Intco No All_InterCo

RptCurrency No LC

Time Yes

A user attempts to post data to the current view shown in the following table. The system checks the
'validation' account to make sure the intersection equals zero (0). If so, the data is posted, and a success
message is displayed. The user can now set the work state to 'submitted' on that intersection. Subsequent

SAP Library: BPC Administration Guide

January 30, 2009 Page 37 of 217

submissions to that exact intersection will be rejected. Users can only send data to the same intersection
if the Entity, Category, or Time member changes.

Account <All>

Category Actual

DataSrc <All>

Entity SalesNE

Intco <All>

RptCurrency <All>

Time Feb.2007

To change work status settings for applications

1. From the Admin Console, expand the Application node.

2. Expand the application for which you want to change the work status setting.

3. Select Work Status Settings.

4. In the Work State column, select Yes for each dimension you want to use to control the work
status settings. Select Owner for the dimension that contains the Owner property.

5. In the Member Validation column, select a member for each non-work status dimensions. (Use
the browse button to open the Member Lookup.)

6. From the action pane, select Save Work Status Settings.

Setting concurrent locks
You can define a concurrent lock setting for each application. Concurrent locks prevent users from sending
data to the same data intersection at the same time. You define a concurrent lock by selecting three or
more dimensions. When multiple users try to submit data to the same members for those dimensions, the
data sent first is accepted. Any data sent concurrently will be rejected.

How do you determine which dimensions define the concurrent lock? Lets say that you set concurrent
locks on Entity, Category, and Time. Your company has one individual that is responsible for the P&L data
for an entity, and one who is responsible for the Balance Sheet data for the same entity. If both users
attempt to write to the database at the same time, one is locked out. (Data submission is based on a first
come first serve basis.) In this case, you would want to set your concurrent locks on Entity, Category,
Time and Account. That way, there would be no data submission conflicts between the two individuals.

To set a concurrent lock

1. From the Admin Console, expand the Application node.

2. Expand the application for which you want to define a concurrent lock setting.

3. Select Concurrent Lock.

4. Select Yes for each dimension you want to use to define the intersection of data upon which a
concurrent lock setting is applied.

5. Select the name of the source application, and then enter the name of the new application.

Optimizing applications
Optimization cleans up data storage which improves the responsiveness of the system. For more
information about optimization options, see the BPC Operations Guide.

SAP Library: BPC Administration Guide

January 30, 2009 Page 38 of 217

To optimize an application

1. From the Admin Console, select Application, and then select any application.

2. From the Manage Applications action pane, select Select Optimize application.

3. Select one or more applications to optimize.

4. Select Lite, Incremental, or Full Optimize. See the descriptions above for more information.
The Compress Database option sums multiple entries for the same current view into one entry
so that data storage space is minimized.

Note: Note: As a rule, lite optimizations are generally most effective when run at intervals measured in
minutes (rather than days or hours). As a result, you may choose to schedule lite optimizations as
part of a Data Manager package. See the BPC Data Manager Guide for more information.

5. Click Optimize Applications. (Depending on the size of your applications and the options
selected, this process can take a long time.)

Required dimensions in applications
Every application is required to have one dimension of each of the following types: Account, Category,
Entity, Time, Currency, and Intercompany. While a currency type dimension is required to be present in all
application sets, it does not have to be part of any applications within the application set. But it must be
present in the application set for validation purposes.

Note that an application set can have multiple dimensions of one type, but each application within the
AppSet can have only one of each of the required types. For example, the application set might have
entity type dimensions named EntityB and EntityF, with EntityB used in the Budgeting application and
EntityF in the Forecasting application.

Dimension type Type
identifier

Definition

Account A Contains your chart of accounts.

Category C Contains the types of data you are going to track, such as Actual,
Budget, Forecast, etc. You can set up categories to store
versions, such as BudgetV1, BudgetV2.

Entity E Contains the business units that are used to drive the business
process. Depending on your application design, the Entity type
can be an operating unit, a cost center, a geographic entity, etc.
This dimension will be used to supply the members that are used
in the Status Board approval process.

Time T Contains the time periods for which you want to store data.

Currency R Contains the currency rates for all currencies in which your
company does business. Required in the application set, but not
in each application. See the note, below.

Intercompany I Contains accounts that are used in Automatic Adjustment
calculations. Required only if your application is set to Single- or
Multi-currency type and you choose the Intercompany option.
See Adding new applications.

About the Measures dimension

In addition to the dimensions listed above, BPC also requires a dimension called Measures. This
dimension is automatically included in all BPC application sets. It is not listed as a dimension in the
Manage Dimensions task, but is displayed on the CurrentView bar in the BPC for Excel module. Measures
allows you to change the view of your data. You can view Periodic, Quarter-to-date (QTD), Year-to-date
(YTD), Half-year-to-date (HYTD), Month-to-date (MTD), and Week-to-date (WTD) views of your data using
the Measures dimension.

SAP Library: BPC Administration Guide

January 30, 2009 Page 39 of 217

Managing data audit
You can set up data auditing to record an audit trail of BPC activity. You can set it up by application and
category.

To manage audit data

1. Start BPC Administration, and select Manage data audit from the Administration Configuration
action pane.

2. From the Select Application field, select the application for which you want to set properties.

3. Select Enable Data Activity to turn on auditing for the selected application.

Note: Click the View Audit Settings for All Categories link from the action pane to see a report that
shows which categories and tasks are enabled for the selected application.

4. Select a category, then select one or more tasks to audit. Select the Select All button to select
all of the task check boxes, or select the Clear All button to clear all check boxes. You can select
from the following tasks:

• BPC for Excel

• Data Manager Import

• Data Manager Clear

• Logic Execution

• Live Report

• Journals

5. Under the Set Log Limits section, do one of the following:

• If you want to keep all audit data for the selected category in the database, leave the
default selected, Never purge audit data.

• If you want to purge audit records for the selected category after a specified number of
days, select Set purge frequence, and enter the number of days for which to keep audit
records in the database. In addition, you must run the DTS Purge package to clear the
database for everything beyond the specified number of days. See Data Manager Help.

6. Under the Schedule Synchronization section, set up a synchronization schedule by selecting
Enable schedule, and entering the desired time frequency. By default, audit records are
synchronized every 12 hours, if enabled.

7. Click the Save Audit Data Now link to run the synchronization process right away.

8. Click the Publish audit report link to send a data audit report to the System Reports page.

9. Click Update to save your changes.

Creating a YTD storage application
Since most general ledger and other source systems store balances on a periodic basis, BPC's default data
storage on applications is based on periodic time intervals. With this method, all calculations are
performed on periodic balances. The balances are then accumulated for year-to-date reporting.

In some business cases, calculations should occur on a year-to-date basis, like in an application with
foreign currency translation. If year-to-date basis is required, you can set your applications to store data
on a year-to-date basis, so they accept data entry in the YTD format. When data is entered into YTD, its
periodic values, used for reporting purposes, are derived by calculating the difference between the current
period and the last period, as in the following example. (This example depicts INC or EXP accounts. There
is no change in behavior for AST or LEQ accounts.)

January February March

Periodic 100 200 0

YTD 100 300 300

SAP Library: BPC Administration Guide

January 30, 2009 Page 40 of 217

Both periodic and year-to-date storage methods support daily, weekly, monthly, quarterly and year-to-
date reporting requirements.

To create a YTD storage application

1. Start BPC Administration and click the Set Application Parameters link from the
Administration Configuration page.

2. If you are using multiple time hierarchies, specify the time hierarchy to be used in this application
in the YTDInputTimeHir field (H1 is the default).

3. Set the YTDINPUT parameter to 1, then click the Update button on the bottom of the page. If
you need to add the YTDINPUT parameter, enter YTDINPUT in the New field at the bottom of the
screen. Click Update at the bottom of the page.

Deleting applications
An administrator can delete applications.

To delete an application

1. From the Admin console, select the application you want to delete.

2. Select Delete application, then select Yes in the confirmation dialog box.

SAP Library: BPC Administration Guide

January 30, 2009 Page 41 of 217

Managing Security

Managing users' access to sensitive information is a fundamental part of the BPC solution. BPC provides an
easy-to-use interface for managing security, and provides two major levels of protection: authentication
(through Microsoft Windows) and authorization (through Microsoft SQL Server and Analysis Services).

Authentication is the component of the security model that describes who can access the system, and is
controlled by prompting users to enter credentials when accessing sensitive areas. This applies to users
that are assigned a user name, and their status is 'active.' Authentication is controlled through the
Windows security system, but is tightly integrated with BPC.

Authorization is the component that describes which data sets authenticated users may access, and is
determined by a user's assigned task and member access profiles. This is controlled primarily through
Analysis Services, and is also tightly integrated with BPC.

About security
Security in BPC is based on task profiles and member access profiles. The default, that is when BPC is first
installed, is no access to all tasks and all secured dimensions. This means that if you do not specifically
assign task profiles to users or teams, no one will have access to any BPC tasks. Similarly, if you do not
define access to members of a secured dimension to users or teams, no one will have access to that
dimension. There is one default task profile and one default member access profile available in ApShell
that you can use to get started quickly.

Defining security involves the following steps.

1. Name each BPC user. See Adding users

2. Assign users to teams. See Adding teams

3. Assign task profiles to users or teams. See Adding task profiles

4. Assign member access to users or teams. See Adding member access profiles

Using SSL (HTTPS) Web Site Security
BPC recommends that you set up Secure Socket Layer (SSL) encryption on your BPC Web servers.

For information about setting up SSL on Internet Information Server (IIS), contact a consultant, or see
these Microsoft Knowledge Base articles, in the order they are presented:

• 228821 — Generating a Certificate Request File Using the Certificate Wizard in IIS 5.0
(http://support.microsoft.com/default.aspx?sd=msdn&scid=kb;en-us;228821)

• 228836 — Installing a New Certificate with Certificate Wizard for Use in SSL/TLS
(http://support.microsoft.com/default.aspx?sd=msdn&scid=kb;en-us;228836)

• 324069 — HOW TO: Set Up an HTTPS Service in IIS
(http://support.microsoft.com/default.aspx?sd=msdn&scid=kb;en-us;324069)

Troubleshooting HTTPS

In certain situations, you can have issues when you set up HTTPS. The following list contains rules to
follow and answers to issues that might arise after installing SSL on your BPC servers.

Rules for running SSL with BPC

Your BPC IIS Web Server must have only the SSL Web server active. If you leave both the HTTP and
HTTPS servers running at the same time, BPC cannot function correctly.

If you run BPC in Multi-server mode, each server must have SSL installed and running. Again, you cannot
have both non-SSL and SSL servers running at the same time on any of the servers.

Correcting Administration Client Issues

If you have followed the rules above, but have upgraded from a previous version of BPC, you might still
have problems connecting through SSL from BPC Administrator clients.

If your Administrator clients get errors connecting to SSL servers, check the following registry key:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\BPC for
Excel\LATEST\WEBSERVERPROTOCOL

http://support.microsoft.com/default.aspx?sd=msdn&scid=kb;en-us;228821
http://support.microsoft.com/default.aspx?sd=msdn&scid=kb;en-us;228836
http://support.microsoft.com/default.aspx?sd=msdn&scid=kb;en-us;324069

SAP Library: BPC Administration Guide

January 30, 2009 Page 42 of 217

The WEBSERVERPROTOCOL key's value should be set to 1 (one) for HTTPS. In certain situations, you
may have to create this key and assign 1 as the value. Normally, this key's value is set when you log on
to a server, but there are cases where it might not be set properly during an upgrade.

Setting up users
You set up users so that they can use BPC. When setting up new users, you need to think about several
topics:

• Is the user a domain user or a local user on the BPC server?

• Do you want BPC to automatically create Windows user IDs for local users?

• Do you want to set up teams so you can more easily assign privileges to users?

• Which users are administrators and which are not?

• To which Entity members will users have access?

About adding users

There are two ways to add users to the system, and the method you use depends on your network
infrastructure. If your security is controlled on a domain and maintained centrally through Active Directory
Services, you must add users to the system with the associated domain name. If your security system is
maintained through BPC, you can add users with only a user ID.

About using domain user IDs

This method requires that each user is a valid user in the domain before adding them to BPC. When a user
ID is added to the system with a domain name (for example, BPC\hsmith), the system assumes the user
ID is being maintained outside of BPC within Active Directory Services. When the user logs on, the system
validates the password against Active Directory Services.

There is a new user interface in Server Manager that allows server administrators to specify specific
domains that are being used for BPC users. In addition, filters can be applied to those domains in order to
select specific users from them. See Server Manager Help for more information.

When you are adding new users from a domain to BPC, you have the ability to select one of the user-
defined groups, and customize it further, if required.

About using BPC user IDs

If not on a domain, users must be valid Windows users. You must set users up on Windows first, and then
add them to BPC's security.

You add BPC user IDs in the following format: hsmith. Behind the scenes, if only the user ID is entered,
the system assumes that security is maintained on the BPC server, and, internally, the system
automatically assigns a domain name.

The assigned internal domain name is determined by the NETMODEL the system is configured to use. If
the system is configured to use NETMODEL=WORKGROUP, then the server machine name becomes the
domain name. If the system is configured to use NETMODEL=DOMAIN, then the Domain parameter from
the Appserver.ini file becomes the domain name.

Adding users

You can add new users in BPC and can assign them to teams, task profiles and member access profiles.

If you are not using the default task or member access profiles and have not set them up yet, you might
want to define them before adding users. You might also want to create teams, so you can assign the
newly added users to the appropriate teams.

Alternatively, when you define the teams and profiles, you can assign users to them at that time.

To add users

1. From the Admin Console, expand Security, expand Users, then expand the domain name. The
Manage Users action pane is displayed.

2. Select Add New User. The Add New Users assistant is displayed.

3. In Step 1 of the Add New Users assistant select the users to which you want to grant access to
BPC:

SAP Library: BPC Administration Guide

January 30, 2009 Page 43 of 217

a. Use the drop down menu in the Available domain field to specify the domain for which you
want to add a new user. If multiple system user groups have been defined on the system,
the associated custom filter is displayed upon selection of one of those groups. You can
modify the custom filter, as needed, by clicking the Custom Filter button.

b. Highlight the desired users from the Available from the domain window, and click the Add
(>) button to move the selected user to the Selected window. To move all users from the
Available to the Selected window, click the Add All button (>>).

Note: Use the Find field and Search button to find a specific user.

4. When Step 1 of the Add New Users assistant is completed click Next.

5. In Step 2 of the Add New Users assistant, enter an email address for each new user and click
Next. (An email address is required if this user is a business process flow Owner or Reviewer.)

6. In Step 3 of the Add New Users assistant assign new users to teams, task profiles, and member
access profiles:

a. In the A. Assign to Teams tab, select the desired team from the Team field. Highlight the
desired users from the Available window and click the Add (>) button to move the selected
users into the Selected window for the specified team.

b. Select the B. Assign to Task profiles tab. Select the desired profile from the Task profile
field. Highlight the desired users from the Available window and click the Add (>) button to
move the selected users into the Selected window for the specified profile.

c. Select the C. Assign to Member Access profiles tab. Select the desired profile from the
Member access profile field. Highlight the desired users from the Available window and
click the Add (>) button to move the selected users into the Selected window for the
specified profile.

7. When Step 3 A, B, and C of the Add New Users assistant is completed click Next.

8. In Step 4 of the Add New Users assistant, review the information, then click Apply to process
the new users.

Modifying users

You can modify users in BPC by changing domain, Task profiles and or Member Access profiles.

To modify a user definition

1. From the Admin Console, expand Security, then select Users. The Users action pane is
displayed.

2. In the hierarchical list at the left of the window, navigate to the desired user and select it.

3. From Manage Users Options task pane select Modify the selected user's definition. The
Modify User assistant is displayed. Follow the prompts in the assistant.

4. Complete the Modify Profile assistant, and click Apply. See Adding users

Setting up teams
You can set up and maintain teams of users. When you assign security to teams, the security works
collectively on the team members. This allows you to easily maintain security for many users at the same
time.

Adding teams

You can define teams in BPC to assign security rules to a set of users, rather than assigning security rules
to each individual user. Teams are not required in order to successfully process security.

Each team can have one team leader. The team leader is the only user that has write access to the team
folder. This means that only the user designated as the team leader can save, delete, and modify
documents in the team folder.

SAP Library: BPC Administration Guide

January 30, 2009 Page 44 of 217

To add a team

1. From the Admin Console, expand Security, then select Teams. The Manage Team Options
action pane is displayed.

2. Select Add New Team. The New Team assistant is displayed.

3. In Step 1 of the New Team assistant enter the team name and description and click Next.

4. In Step 2 of the New Team assistant select the members for the new team:

a. Use the drop down menu in the Show field to specify the information that you want to show
in the Available window below. You can specify Users or Teams (if you want to create a
team that includes another team).

b. In the Available window, highlight the desired users (or teams) and click the Add (>) button
to move the selections into the Selected window.

Note: Use the Find field and Search button to find a specific user.

c. To move all users from the Available to the Selected window, click the Add All button
(>>). Designate a single team leader by clicking on the box to the left of the leader's name
in the Selected window.

4. When Step 2 is completed click Next.

5. In Step 3 of the New Team assistant assign task and member access profiles:

a. Use the drop down menu in the Task Profile field to select the task profile for which you
want to specify one or more member access profiles. The combination of task/member
access profiles determines access to BPC.

b. In the Member Access Profile window, select the desired profile(s).
c. When Step 3 is completed click Next.

6. In Step 4 of the New Team assistant, review the information, then click Apply to process the
new teams.

Modifying teams

You can modify the definition of an existing team in BPC. When modifying a team, you can change
everything except the team name. If you want to reuse most of an existing team, but give it a new name,
refer to Copying a team.

To modify a team definition

1. From the Admin Console, expand Security, then select Teams. The Manage Team action pane
is displayed.

2. In the hierarchical list at the left of the window, navigate to the desired team and select it.

3. From Manage Team action pane select Modify the selected team's definition. The Modify
Team assistant is displayed. Follow the prompts in the assistant to revise the team definition,
revise selected team members, or assign different task and member access profiles.

4. Complete the Modify Team assistant, and click Apply. See Adding teams

Setting up profiles
Profiles allow you to define categories of users with who perform common tasks and who have common
access to BPC applications. You can set up and maintain two types of profiles for users: Task profiles and
Member Access profiles.

The combination of these two profile types defines the way an individual can use BPC.

Adding task profiles

Task profiles determine what type of activity or roles the user can perform in BPC. You can add tasks as
needed. After creating a task profile, you assign it to multiple users, as needed.

For information about the default task profiles, and descriptions of each profile, see Default task
profiles.

To add task profiles

1. From the Admin Console, expand Security, then select Task Profiles.

SAP Library: BPC Administration Guide

January 30, 2009 Page 45 of 217

2. Select Add a New Task Profile. The New Task Profile assistant is displayed.

3. In Step 1 of the New Task Profile assistant, enter the profile name and description. Check one
or more functions that the profile will contain, then click Next.

4. In Step 2 of the New Task Profile assistant, select the tasks (associated with the selected
functions) you want to enable for the profile. The Default function tasks field displays the tasks
that are automatically included in the profile. See Default task profiles.

a. In the View tasks by interface field, use the drop down menu to select a BPC interface.
b. A list of associated tasks appears in the Available interface tasks field. Highlight the

desired tasks and click the Add (>) button to move the selections into the Selected
interface tasks window.

c. To move all tasks from the Available to the Selected window, click the Add All button (>>).
d. Repeat these sub steps for each BPC interface.

5. When Step 2 is completed click Next.

6. In step 3 of the New Task Profile assistant, assign the users for whom the profile will apply.

a. Use the drop down menu in the View by field to specify the information that you want to
show in the Available window below. You can specify Users or Teams (if you want to apply
the profile to all members of a team).

b. In the Available window, highlight the desired users (or teams) and click the Add (>) button
to move the selections into the Selected window.

c. Use the Find field and Search button to find a specific user.
d. To move all users from the Available to the Selected window, click the Add All button

(>>). Designate a single team leader by clicking on the box to the left of the leader's
name in the Selected window.

7. When Step 3 is completed click Next.

8. In Step 4 of the New Task Profile, review the information, then click Apply to process the new
task profiles.

Default task profiles

A System Administrator, by default, has the following task rights:

• Appset

• DefineSecurity

• DefineDrillThrough

A Primary Administrator, by default, has the following task rights:

• AdminDataLock

• Application

• BusinessRules

• DefineSecurity

• DefineSecurity

• Dimensions

• InsightAdmin

• Lockings

• ManageAudit

• ManageBook

• ManageBPF

• ManageComments

• ManageDistributor

• ManageLiveReport

• ManageTemplates

SAP Library: BPC Administration Guide

January 30, 2009 Page 46 of 217

• UpdateToCompanyFolder

• A Secondary Administrator, by default, has the following task rights:

• Dimensions

• eAnalyze

• ManageBPF

Task profile descriptions

The following table describes the available tasks. (The shading is for visual purposes only.)

Interface Task Can be assigned to Description

Application Only the primary
administrator (default)

Can create, modify, and
delete applications in this
application set, make
changes to dimensions and
add dimensions, and
optimize applications.

Appset System administrator,
by default, but can be
assigned to primary
administrator

Can enable and disable
Insight, create new
application sets, modify
application sets, and set
application set parameters
(in Web Admin Tasks).

Business Rules Primary administrator,
by default, but can be
assigned to secondary
administrator

Can define business rules.

Dimension Only primary and
secondary
administrators
(default)

Create, modify, process,
and delete dimensions and
members.

Lockings Primary administrator,
by default, but can be
assigned to secondary
administrator

Set up and edit concurrent
locks, and define and edit
work status codes.

Administration

Misc Primary administrator,
by default, but can
also be assigned to
system and secondary
administrators.

Can manage and validate
custom menus and view
application set status.

eAnalyze Anyone Can access, manage and
edit ad hoc and audit
reports, and access and
save to the report library.

AnalysisCollection

ManageTemplate Primary administrator,
by default, but can be
assigned to secondary
administrator

Can manage the company
report library, access and
save templates from the
library, restrict workbook
options, and manage

SAP Library: BPC Administration Guide

January 30, 2009 Page 47 of 217

Interface Task Can be assigned to Description

custom menus.

SubmitData Anyone Can access the schedule
library, build input
schedules, send data. Can
use spread, weight, and
trend options. Can post
documents with application
context to the Content
Library.

Audit ManageAudit Only primary
administrators
(default)

Can manage activity and
data auditing.

BPFExecution Anyone Can run BPFs from BPC for
Office or BPC Web.

BusinessProcessFlow

ManageBPF Primary and
secondary
administrators only
(default)

Can create and edit BPFs.

ManageDistributor Only primary
administrator (default)

This user or team can use
the Offline Distributor.

Collaboration

PublishOffline Anyone This user or team collects
changes to offline input
schedules and sends data to
a database.

AddComment Anyone This user or team can add
comments.

Comments

ManageComments Primary administrator
(by default), but can
be assigned to system
and secondary
administrators.

This user or team can
remove comments.

SAP Library: BPC Administration Guide

January 30, 2009 Page 48 of 217

Interface Task Can be assigned to Description

Execute Anyone This user or team can
manage Data Manager
packages:

• Data upload
• Data download
• Data Preview
• Clear saved prompts
• View status based on

user ID
• View schedule status

based on user ID
• Run Specific package
• Run user package
• Validate & Process

conversion files for
company

• Validate & Process
transformation files for
company

• Save Transformation
• Save Transformation As
• Maintain status based

on user ID
• View status

GeneralAdmin Primary, system and
secondary
administrators.

(No default
assignment)

This user or team can
perform tasks such as:

• New Transformation
• Test transformation

with data
• New Conversion
• New Conversion Sheet
• Save Conversion
• Save Conversion As

DM

PrimaryAdmin Primary, system and
secondary
administrators.

(No default
assignment)

Can perform default
PrimaryAdmin tasks such
as:

• Manage transformation
files for company and
Validate & Process

• Manage conversion files
for company and
Validate & Process

• Packages that against
the fact table directly
are limited to admin

• Manage team package
access

• Organize package list
• Maintain status

regardless of user ID
• Run admin package

SAP Library: BPC Administration Guide

January 30, 2009 Page 49 of 217

Interface Task Can be assigned to Description

TeamLeadAdmin Primary, system and
secondary
administrators.

(No default
assignment)

Can:

• Manage Transformation
for non-company files
and Validate & Process

• Manage Conversion for
non-company files and
Validate & Process

• Data Preview team
folder

• Validate & Process
conversion files for
team

• Validate & Process
transformation files for
team

• Data upload team
folder

• Data download team
folder

FileAccess UpdateToCompanyFolder Secondary
administrator, by
default, but can be
assigned to primary
administrators.

Can add files to the
Company folder.

Analysis Anyone Has the following access
rights to Insight:

• View Dashboard
• Define KPI
• View KPI Variance

Analysis
• Define KPI Alerts
• Design KPI Charts
• View KPI Radar
• View KPI Predictions
• Create KPI report

(flash)
• Perform KPI on-

demand predictions
• Comment viewing

based on variance
context results

• Action Manager viewing
• Add new and update

actions based on owner
• Edit actions regardless

of owner
• Insert KPI into

Word/PowerPoint/Excel

Insight

InsightAdmin Primary administrator
(by default), but can
be assigned to
secondary
administrators.

Can administer Insight.

SAP Library: BPC Administration Guide

January 30, 2009 Page 50 of 217

Interface Task Can be assigned to Description

AdminJournal Primary, system and
secondary
administrators.

(No default
assignment)

Can manage journals:

• Create and maintain
journal templates

• Clear journal tables
• Create Journal

CreateJournal Anyone Can create or modify
journal entries.

PostJournals Anyone Can post journals.

ReviewJournals Anyone Can review journals

Journal

UnpostJournals Anyone Can unpost journal entries.

ManageBook Primary administrator

(No default
assignment)

This user or team can
delete books in BPC
Administration.

PublishBook Primary administrator

(No default
assignment)

 This user or team can
publish a book of reports.

Publish

PublishFile Primary administrator

(No default
assignment)

Can post files to the
Content Library or in BPC
Web.

Security DefineSecurity Only system and
primary
administrators (by
default).

Can manage users, task
and member access
profiles.

AuditReport Anyone This user or team can
create audit reports.

BPFReport Anyone This user or team can
define Business Process
Flow reports.

CommentReport Anyone This user or team can run a
comment report.

JournalReport Anyone This user or team can run a
journal report.

ViewSystemReport

Workstatus report Anyone This user or team can run a
work status report.

SAP Library: BPC Administration Guide

January 30, 2009 Page 51 of 217

Interface Task Can be assigned to Description

WorkStatus SetWorkStatus Anyone This user or team creates
work status on a data
region.

AccessContentLib Anyone This user or team can
access, filter, and sort, and
add pages to the Content
Library in BPC Web.

CreateWebPage Anyone This user or team can
create new web pages in
BPC Web.

LiveReport Anyone This user or team can
access live reports in BPC
Web.

ManageContentLib Primary administrator
(by default), but can
be assigned to system
and secondary
administrators.

Can manage all items in the
Content Library.

ManageLiveReport Primary administrator
(by default), but can
be assigned to
secondary
administrators.

This user or team allows
you to manage live reports
using drag & drop in BPC
Web.

ZFP

WebAdmin Primary administrator
(by default), but can
be assigned to
secondary
administrators.

Can do the following in Web
Admin Tasks:

• Edit drill through tables
• Set application

parameters
• Manage dimensions

(make changes to
existing dimensions
based on dimension)

• Publish Reports
• Manage document

types and subtypes
• Use Bulk Collaboration
• Publish Non-BPC

reports

Adding member access profiles

Member Access profiles determine the specific applications to which users have Read access, Write
access or no access. In addition to application you can restrict access for the profile by dimension and
member. After creating a Member Access profile, you assign it to multiple users, as needed.

When defining access to a secured dimension that has one or more hierarchies defined, security is applied
to the member and all its children. For example, if you grant access to a member that has 10 children,
users with access to the parent member also have access to all ten children. In addition, access is applied
across levels in BPC. This means if you grant access to a member that is at level two (2) in the hierarchy,
that user also has access to all members at level two of the hierarchy for branches on which they are
granted access at all.

SAP Library: BPC Administration Guide

January 30, 2009 Page 52 of 217

To add member access profiles

1. From the Admin Console, expand Security, then select Member Access Profiles. The Member
Access Profiles Options action pane is displayed.

2. Select Add a New Member Access Profile. The New Member Access Profile assistant is
displayed.

3. In Step 1 of the New Member Access Profile assistant, enter a name for the profile and a
description, then click Next.

4. In Step 2 of the New Member Access Profile assistant, use the table to define dimension and
member access in each BPC application. (Application names are on the tabs.) Do the following:

a. Select the appropriate application tab.
b. On a row in the Dimension column, use the drop down menu to select a dimension. (Only

secured dimensions will display in the drop-down.)
c. On the same row, click the lookup button (...) in the Member column to select a member

using the Member Lookup dialog. See Using the Member Lookup.
d. On the same row in the Access column use the drop down menu to specify Read, Write

(Read & Write), or No access.
e. Repeat a - d for each access/dimension/member rule you want to define.
f. When satisfied with your selections, click Next.

5. In Step 3 of the New Member Access Profile assistant, assign the users for whom the profile
will apply by doing the following:

a. Use the drop down menu in the View by field to specify the information that you want to
show in the Available window below. You can specify Users or Teams (if you want to apply
the profile to all members of a team).

b. In the Available window, highlight the desired users (or teams) and click the Add (>) button
to move the selections into the Selected window. To move all users from the Available to
the Selected window, click the Add All button (>>).

Note: Use the Find field and Search button to find a specific user.

c. Designate a single team leader by clicking on the box to the left of the leader's name in the
Selected window.

6. When Step 3 is completed click Next.

7. In Step 4 of the New Member Access Profile assistant, review the information, then click
Apply to process the new member access profiles.

Modifying profiles

You can modify the definition of an existing Task or Member Access profile in BPC.

To modify a profile definition

1. From the Admin Console, expand Security.

2. Select Manage Task Profiles or Manage Member Access Profiles. The selected Manage
Profile Options task pane is displayed.

3. In the hierarchical list at the left of the window, navigate to the desired profile and select it.

4. From the Manage Profile Options task pane, select Modify the selected profile definition.
 The Modify Profile assistant is displayed. Follow the prompts in the assistant.

5. Complete the Modify Profile assistant, and click Apply. See Adding task profiles or Adding
member access profiles

Viewing security reports
You can view security reports from the Admin Console and from BPC Web. In order to view (and publish)
security reports, you must have the 'SecurityReport' task assigned to you.

SAP Library: BPC Administration Guide

January 30, 2009 Page 53 of 217

Viewing security reports from BPC Web

Before security reports can be viewed in BPC Web, or to refresh a security report if there have been
changes to security settings, you must publish the desired

type of report. The following procedure describes how to publish, then view reports in BPC Web. You must
have the 'SecurityReport' task assigned to you.

To view security reports from BPC Web

1. From the BPC Launch page, select BPC Administration.

2. From the action pane, select Publish Reports from the Web Admin Tasks section.

3. Select one or more reports that you want to publish.

4. Click the OK button.

5. From the action pane navigation bar, click the Home button.

6. From the Getting Started Options action pane, select Launch BPC System Reports.

7. Select Security reports.

8. Select the type of report you want to view: By User, By Team, By Member access profile, By
Task profile, or BPF Security Report.

9. From the report, use the toolbar at the top to do any of the following:

• Flip through pages

• Increase or decrease the display size

• Search for specific text in the report using full-text search

• Export the report to a selected output format

• Refresh the report

• Get help on the report

Viewing security reports from the Admin Console

To view security reports from the Admin Console

1. From the Admin Console, select Security.

2. From the action pane, select Security reports.

3. Select the type of report you want to view: By User, By Team, By Member access profile, By
Task profile, or BPF Security Report.

4. From the report, use the toolbar at the top to do any of the following:

• Flip through pages

• Increase or decrease the display size

• Search for specific text in the report using full-text search

• Export the report to a selected output format

• Refresh the report

• Get help on the report

SAP Library: BPC Administration Guide

January 30, 2009 Page 54 of 217

Managing Business Process Flows

You manage business process flows (BPF) by adding new ones for use in an application sets, copying
existing ones, and resetting instances of BPFs. You can also report on BPFs.

About business process flows
Business Process Flows allow you to pre-package and sequence application tasks for different departments
within your organization. Any of the available features within BPC Web, BPC for Office, and BPC
Administration can be utilized by a business process flow.

Using the intelligence of BPC data regions, you can set up a single business process flow that can be used
across applications within an application set. A data region serves as a key for opening a single instance of
a business process flow. For example, an 'Allocate Expense' business process flow could be running for the
same entity and time, but different categories.

Business process flows can also be integrated with work states to offer an additional level of intelligence
and integration with your company’s regulatory processes.

Using an Explorer-like interface that is accessible from BPC Web and BPC for Excel, end-users are guided
through pre-defined sequential tasks that span across the different areas of BPC.

Copying a Business Process Flows
Copy an existing Business Process Flow (BPF) when you want to create a new one that is largely similar to
the existing one.

To copy a Business Process Flow

1. From the Admin Console, expand Business Process Flows. The list of existing Business Process
Flows is displayed in the hierarchy.

2. Select the BPF that you want to copy.

3. From the action pane, select Save as business process flow.

4. Enter a name and description for the BPF.

5. Click Save as BPF.

Resetting Business Process Flows
You can reset BPF instances back to step one. We recommend using with caution, however, because when
you reset the BPF, you are resetting all instances of the BPF for all users.

To reset a business process flow

1. From the Admin Console, expand Business Process Flows. The list of existing Business Process
Flows is displayed in the hierarchy.

2. Select the business process flow that you want to reset.

3. From the Manage Business Processes action pane, select Reset Process Flow Instances.

4. From the confirmation message, click OK.

Reporting on Business Process Flows
You can generate two different types of BPF reports: a standard BPF report and a BPF step report. Both
reports allow you to specify the business process flow, time frame, associated data region, and page
orientation.

The standard BPF report lists the steps and sub-steps in the right column, and the status of each step or
sub-step in the left column.

The BPF step report lists the entities for which the report is run in the rows, and the status of each step
and sub-step in the columns.

SAP Library: BPC Administration Guide

January 30, 2009 Page 55 of 217

Note: The following procedure describes how to prepare a report from BPC Web. From the Admin
Console, you can prepare a standard-type report only. To prepare a standard BPF report from the
Admin Console, expand Business Process Flows, select the BPF for which you want to report on,
and select BPF status report. See steps 4 and 5 below to complete and display the report.

To generate a BPF report

1. From the BPC Web, Getting Started Options action pane, select Launch BPC System Reports.

2. Select BPF reports.

3. Select the desired BPF from the BPF Reports category if you want to prepare a standard report,
or select the BPF from the BPF Step Reports category if you want to prepare a BPF Step report.

4. Select the business process flow for which you want to run that report.

5. From the action pane, select BPF status report.

6. Specify the start date, end date, orientation and data region to report on.

7. Click the OK button to generate the report for the selected business process flow. The report
appears in a new browser window.

Adding new business process flows
You can add new business process flows to an application set.

Add a new business process flow

You add a new business process flow by performing the following tasks:

• Defining the BPF, which involves naming it, giving it a description and controlling application,
and identifying an owner

• Defining the data region, which involves defining which dimensions define the BPF data
region

• Defining the timing, which involves setting the recurrence pattern, activation date and time,
and notification time

• Setting up access rights, which allows you to specify which users or teams will be able to
access the BPF

• Adding steps and substeps, which describe the general framework for the BPF

• Define actions, which involves identifying the tasks associated with each step and sub-step

• Enabling the BPF for the users who have been given access rights

To add a new Business Process Flow

1. From the Admin Console, select Business Process Flows from the navigation pane.

2. From the action pane, select Add a new business process. The Add a New Business
Process Flow assistant is displayed.

3. Define the new Business Process Flow. See Defining a Business Process Flow.

Defining a Business Process Flow

The Define BPF page allows you to name the BPF, give it a description and controlling application, and
identify an owner.

The controlling application is the application whose Time dimension will govern the BPF. For example, if
you select the Finance application, whose Time dimension is in Monthly increments, the BPF will use the
monthly time grain.

The BPF owner is a user who will be notified when a step is completed.

SAP Library: BPC Administration Guide

January 30, 2009 Page 56 of 217

To define a BPF

1. From the Setup BPF > A. Define BPF page of the Add a New Business Process Flow
assistant, enter the Business Process Flow name and description in the first two fields.

2. In the What is the controlling application? field, enter the name of the controlling
application.

3. In the BPF Owner field, enter a valid user name. You can click the lookup button to display a
list of users. Select the desired user name, then click OK.

Note: The user must have an email address assigned to them in order for them to own this BPF.

4. Click Save on the bottom of the window, then click Continue to Setup Task B.

5. See Define Data Region.

Define the data region

The Define Data Region page displays the dimensions associated with the controlling application
(specified in the Define BPF page).

The data region defines the "base" region in which the BPF is designed. However, end users who run the
BPF may select a different data region, as needed, to perform their process flow tasks.

The 'drive' dimension is a dimension that is common to all data regions that users might use in completing
their BPF tasks. For example, if you select the Finance application, the drive dimension might be Category
or Entity. The drive dimension must have the 'Reviewer' property defined.

The 'identity' dimensions are all the dimensions that will be used in a BPF. The Time dimension, used in all
BPFs, is automatically selected.

To define the data region

1. From the Setup BPF > B. Define the data region page of the Add a New Business Process
Flow assistant, select the Drive dimension. The only options available are those that have a
'Reviewer' property defined for the dimension.

2. In the Identity Dimensions column, select all the dimensions that will be used in the BPF.

3. Click Save on the bottom of the New Business Process Assistant window, then click Continue to
Setup Task C.

4. See Define timing.

Define timing

The Define Timing page is comprised of three sections: Recurrence pattern, activation date and time,
and notification time.

To define BPF timing

1. From the Setup BPF > C. Define timing page of the Add a New Business Process Flow
assistant, select the desired frequency of recurrence in the Recurrence field.

Note: Currently the only option available is Once. Additional options (Daily, Weekly, Monthly, Quarterly,
and Yearly) will be available in a later release.

• Once - To set a BPF to run once and not recur. The BPF will become inactive after it runs
once and will not appear on the end user's action pane. However, it will remain on the
Administrator's list of BPFs and may be edited for future use.

2. In the BPF activation date section, use the drop down menus to specify the date and time the
BPF will become active. Prior to this time, it will not appear on the end user's action pane.

3. Automatic e-mail messages can be sent to BPF users to remind them to perform their appointed
BPF tasks. In the When should users be notified section, use the two drop down menus to
specify a number of days prior to the start of, or after the start of the BPF frequency you
specified in Step 1.

4. Click Save on the bottom of the New Business Process Assistant window.

5. Click Continue to Setup Task D.

6. See Setting access.

SAP Library: BPC Administration Guide

January 30, 2009 Page 57 of 217

Setting access

The Set Access page allows you to specify which users or teams will be able to access the BPF. Users not
specified in this step will not see the BPF on their action panes.

To set access

1. From the Setup BPF > D. Set Access page of the Add a New Business Process Flow
assistant, in the View by field, select Teams to display team names or Users to display user
names in the Available window.

2. From the Available window, highlight the desired users (or teams) and use the arrow buttons
to move your selections into the Selected window.

3. Click Save on the bottom of the window.

4. Click Next to continue adding the BPF, or click Close to close and save the partial BPF for future
editing.

5. See Defining steps and sub-steps.

Adding a new step

Steps are general business actions you take in completing the business process. Each Business Process
Flow (BPF) must contain at least one step.

Here are some properties of steps:

• Steps may or may not have sub-steps associated with them

• If a step has no sub-steps, it must have an action associated with it

• If a step does have one or more sub-steps, there can be no action associated with the step.
Instead, an action is associated with each sub-step.

• Steps may be subject to approval before a BPF can be completed

• Steps must be completed in sequential order

To add a step

1. From the Define Steps/Sub-Steps task in the Add a New Business Process Flow assistant,
click Add. The Add New window is displayed.

2. In the What do you want to add field select Add a new process step.

3. In the Name field, enter the name of the step.

4. In the Instruction field, enter text describing the step. This instruction is displayed on the action
pane for this BPF. It should give users a general description of this step.

5. In the Properties fields, use the check boxes to indicate if you want to:

• Enable alerts. Reserved for future use.

• Enable completion criteria. Completion criteria may be enabled if Work Status has been
enabled in the controlling application of the BPF. If defined here, the selected combinations
of members must be set to the specified work status before the step can be considered
complete. See Managing work status.

• Enable reviewers. This allows reviewers (as defined in the 'Reviewer' property of the drive
dimension) to review the step. If you want to define an action that the reviewer must
perform in order to review the step, select Set/Modify Custom Review Actions. See
Defining actions.

• Send email to reviewers. This option becomes active when you choose Enable
reviewers. When you choose this option, an email is sent to the step’s reviewers when a
step is identified by the user as complete. The email subject line communicates the
following: “<Step_Name> step of <BPF_Name> has been completed by <User>”. The
email uses the name of the person who completed the step as the email’s sender. To set the
text for the body of the email, choose Define email message. Note that if you do not
define the custom email message, the above-mentioned email subject line is repeated in the
body of the email.

6. If you selected to enable completion criteria, complete the Completion criteria section. For each
dimension:

SAP Library: BPC Administration Guide

January 30, 2009 Page 58 of 217

• Select the current view type: Member lookup, Inherit from CV, or Inherit from data
region.

• If you selected Member, use the Member Lookup dialog to select a member value for the
Member field.

• Use the Work status drop-down menu to select an existing work status designation. See
Managing work status.

7. Click OK. The new process step is displayed in the hierarchy.

8. Repeat the above steps as needed to add all the desired steps. To change the order of the steps,
highlight one and use the up or down arrow button (in the top right above the hierarchy window).
You can also use the Delete button to delete a step.

9. Click Save to save the steps. To add sub-steps for a given step, highlight it and click Add. See
Adding a new sub-step.

10. Click Next to display the Define Actions screen. See Defining actions.

Adding a new substep

Sub-steps are used when you want to define one or more actions under a single step. Here are some
properties of sub-steps:

• Each sub-step has an associated action

• Sub-steps are not subject to approval in the BPF

• Sub-steps are not subject to completion criteria

• Sub-steps need not be performed in sequential order

• They may be assigned to one or more users.

To add a sub-step

1. From the Define Steps/Sub-steps screen of the New Business Process Assistant window,
highlight the step for which you want to create a sub-step. and click Add. The Add New window
is displayed.

2. In the What do you want to add field select Add a new sub-step.

a. In the Name field enter the name of the sub-step.
b. In the Instruction field enter text describing the sub-step. The instruction will be displayed

in the action pane shown to the user when the sub-step is selected.

3. Click OK. You are returned to the New Business Process Assistant window. The new sub-step
appears in the hierarchy.

4. Repeat the above steps as needed to add all the desired sub-steps. To change the order of the
sub-steps beneath a step, highlight one and use the up or down arrow button (in the top right
above the hierarchy window). Use this for organizational purposes only; the order of the sub-
steps does not affect the processing of the BPF. Multiple sub-steps may be performed
concurrently. Sub-steps are not sequential. You can use the Delete button to delete a sub-step.

5. Click Save to save the sub-steps.

6. Click Next to display the Define Actions screen. See Defining actions.

Defining actions

An Action is an individual task performed in BPC as part of a BPF. Actions can be assigned to the following
items:

• A step that does not contain sub-steps

• A sub-step

• A custom review action (this allows the reviewer to perform an action required to review a
specific step)

An action could be something like opening a schedule or publishing a report. In previous versions of BPC,
actions were driven by EV functions or MNU functions.

SAP Library: BPC Administration Guide

January 30, 2009 Page 59 of 217

Actions are available in the action pane for all users who have access to the BPF. See Setting access.

To define an action

1. From the Define Steps/Sub-steps screen of the New Business Process Flow assistant,
highlight the sub-step for which you want add an action. You may also highlight a step if it has no
sub-steps. Click Next. The Define Actions page is displayed.

2. In the Action Name section, the sub-step (or step) name appears as the default action name.
Click Add to add additional action names. The Add New Action window is displayed. Enter the
action name and click OK. You are returned to the Define Actions page. The first action in the
list is the one that will automatically display when the user selects the action.

3. In the Detail section of the page, use the drop-down menus to specify the BPC interface and task
to associate with the action. In the Parameter Value field, if any, enter valid parameters for the
specified interface/task. Certain parameters allow you to browse the file system for a parameter
name.

4. In the Current View section, use the drop-down menus to specify the application associated
with the specified action. Use the drop-down menus in the Member column to specify the source
of the values used for each dimension. Alternatively, you may click the look button to display the
Member Lookup dialog.

5. Click Save to save the actions.

6. Click Back to return to the Define Steps/Sub-steps screen, if you want to create more steps or
sub-steps. Click Next to progress to the BPF Finish screen.

Finishing a Business Process Flow

You can finish a BPF after the first three general steps have been completed. The Finish page shows a
summary of the BPF for your review, and allows you to make the BPF available to users immediately, or
hold it aside for future use. If you make it available, the BPF will appear on the action panes of the
specified users.

To finish a BPF

1. From the Setup BPF > D. Finish page of the Add a New Business Process Flow assistant,
review the BPF information.

2. To enable the BPF for immediate use, select the Enable this BPF for users box in the lower left
corner of the screen. Deselect the check box if you do not want the BPF to be available at the
present time.

3. Click Save to finish the BPF, then click OK.

4. Click Close to close the assistant.

Deleting a Business Process Flow

You can delete a Business Process Flow (BPF) when you want to remove it from the application set
entirely.

Note: As an alternative to deleting, you can disable a BPF. A disabled BPF does not appear in any end-
user action panes but does remain on the administrator's list. It remains available to copy and
modify in the future. For detail on disabling a BPF, see Finishing a Business Process Flow.

To delete a Business Process Flow

1. From the Admin Console, select Business Process Flows. The list of existing Business Process
Flows is displayed in the hierarchy. Also the Manage Business Processes action pane is
displayed.

2. From the hierarchy, select the BPF that you want to delete.

3. Under the Process Flow Tasks section select Delete business process flow. A confirmation
message appears. Click OK.

Managing Work States
Work states allow submitted data to be tracked, approved and locked using customizable work state
definitions that suite your business needs.

SAP Library: BPC Administration Guide

January 30, 2009 Page 60 of 217

About managing work status

Managing work status involves specifying who can make changes to data in the database and who can
change the work state on a data set. Default work states are Unlocked, Submitted, and Locked. You can
add new work states if you need more flexibility.

After your work states are defined and your ownership dimension is set up, end users can use the work
states to apply a label to a specific current view intersection for the purpose of locking data so it can be
reviewed, approved, etc. For example, your month-end close business process requires that a specific set
of data is locked down so that accurate month-end reports can be created. After a data submission, the
owner sets the work state to 'Submitted.' This locks the data intersection from subsequent submissions.

You can define one set of specific current view values for each application. See Changing work status
settings for applications.

The following rules describe work status behavior:

• The default method for managing work status is bottom-up. That is, the status of a parent
cannot be higher than the status of its children. You can set work status to top-down in the
TOPDOWN field on Setting Application Parameters page. See Setting application
parameters.

• For bottom-up behavior, the maximum state a parent can be set to is the lowest state of its
immediate children.

• The minimum state a child can be set to is the state of its immediate parent. For example, if
the parent state is Submitted, the child state must be at least Submitted.

• If the status of a parent is set to Locked, you cannot unlock the children.

• The owner of an entity can set the work state to any state designated as an Owner state.
See Adding new work states.

• The manager of an entity can set the work state to any state designated as a Manager state.
See Adding new work states.

• A manager is the owner of a parent-level member. The owner of a parent level member is
the manager of all its descendants.

To use work state tracking you must specify the hierarchy (H1, H2, H3, ..., Hn) within the owner
dimension for which you want to use work status.

For information on editing the work status information, see Adding new work states.

Adding new work states

Default work states are Unlocked, Submitted, and Locked. You can add new work states if you need more
flexibility.

When you add a new work state, you define who can edit data, what area of BPC can be edited, and who
can change the work state.

The levels of security are:

• All - All users (with the appropriate member access rights) can change data

• Locked - No one can change the data.

• Manager - Only Managers (parents of owners) can change data

• Owner - Only owners can change data

The areas of BPC for which you can control the level of security are:

• Data Manager - Controls data input from running a Copy, Import, or Move package

• Journals - Controls data input from posting journal entries

• Manual BPC for Office data entry - Controls data submissions from reports and input
schedules in BPC for Office

• BPC Comments - Controls data input from posting comments (unstructured data)

SAP Library: BPC Administration Guide

January 30, 2009 Page 61 of 217

• Documents - Controls posting documents with application context to the Content Library
(unstructured data)

To add a new work state

1. From the Admin Console, select Work Status.

2. From the action pane, select Add a new work state. The Add a New Work State Step 1 task
pane is displayed.

3. Enter the new work state name (up to 25 characters) and a description, then select Add a New
Work State Step 2 of 2 in the task pane.

4. For each area (Data Manager, Journals, etc.), select the desired level of security: All, Locked,
Manager, or Owner.

5. In the Controlled By field, select who can set the work status the new work state. From the
drop down menu, select Owner, Manager, or Both.

6. Select Add a New Work State.

Editing work states

Settings that appear in the Work Status information table can be edited directly.

To edit a work state

1. From the Admin Console, select Work Status.

2. From the table in the center pane click in the cell that contains a value you want to change. For
example, click in any cell within the Work State column, then type directly into the cell to
change the work state description. Or click any cell within the other columns, then use the drop-
down list box to select from the available options.

3. Under the action pane heading Work Status Tasks, click Update work state to save your
changes to the database.

Editing work status descriptions

You can edit the descriptions for existing work states. This is useful in further clarifying the purpose of a
work state.

To edit work state descriptions

1. From the Admin Console, select Work Status.

2. Select a single Work State in the table displayed in the center pane.

3. Edit the work state description, as desired, then click Edit description at work state.

Reordering work states

The order of the work status follows your business processes. For the ApShell application set, the order is
Unlocked, Submitted, and Approved by default. While this may be a natural order based on the code
names, you can change the order if it suits your needs.

The top of the list has the lowest level of security. The bottom of the list has the highest level of security.

To reorder work status

1. From the Admin Console, select Work Status. The center pane displays a table showing the
current order of work status. The Manage Work Status action pane is displayed.

2. Under the action pane heading Work Status Tasks, click Reorder work states. The Reorder
Work State action pane is displayed.

3. Select a desired work state on the action pane. Use the Up or Down arrows to reposition it.
 When the desired order appears in the Work States table, click Reorder Work States.

SAP Library: BPC Administration Guide

January 30, 2009 Page 62 of 217

Reporting on work states

The BPC Reporting Console allows you to report on and track work status for submitted data by
application.

To report on work status

1. From ‘Getting Started’ mode within BPC Web select Launch BPC System Reports from the
action pane.

2. Select Work Status Report from the Application Reports section of the action pane.

3. Specify the report parameters, which include start date & time, end date & time, member values
for the dimensions that track work status, and page orientation.

4. Click the OK icon in the action pane to generate the report.

Deleting work states

You may delete a work status that is not currently in use.

To delete a work status

1. From the Admin Console, select Work Status. The center pane displays a table showing the
current order of work states. The Manage Work Status action pane is displayed.

2. Under the action pane heading Work Status Tasks, click Delete a new work state. The
Delete Work Status action pane is displayed.

3. Select a desired work state(s) in the Data State table on the action pane and click Delete Work
Status Options.

4. Click Yes to delete the selected work state and reset the work status settings for the application.
Click No to retain the selected work status and return to the Delete Work Status action pane.

SAP Library: BPC Administration Guide

January 30, 2009 Page 63 of 217

Managing Business Rules

Business rules provide the mathematical foundation for your BPC applications.

About business rules
Business rules allow you to customize large data manipulation tasks, such as bulk data imports with
currency translations, as well as smaller tasks, such as submitting input data to the database. BPC's
business rules support both management and legal consolidation reporting.

You can modify business rules using table-based logic or script-based files. Table-based logic provides the
features that were available in the UCON accelerator (Consolidation Engine). Future releases will continue
to provide standard calculations with a consistent UI for business rule modifications. Script-based files can
be customized using an MDX and SQL syntax.

These are some of the activities for which you can define business rules:

• Initialization of beginning balances when a new fiscal cycle starts. See Carry-forward rules.

• Validation of input data See Validation rules.

• Conversion of local currency data in the desired reporting currencies. See Currency conversion
rules.

• Matching of inter-company transactions. See Intercompany booking rules.

• Generation of all the consolidation entries for the desired groups of entities (eliminations,
adjustments, re-classifications, minority calculations, etc.) See Automatic adjustments.

• Other calculations

Setting up a legal consolidation application set
This section describes how to set up a legal application set. BPC provides several consolidation business
rules. The use of these rules depend heavily on the design of the application set.

The first step in setting up a legal consolidation application set is to ensure the dimensions are set up
properly. Each application must contain some required dimensions, while some other dimensions are
optional.

The dimensions discussed here are based on the standards used in the business rules. Other dimensions
can co-exist in a reporting application but do not impact the business rule function.

All applications must contain the four required ENTITY, CATEGORY, TIME and ACCOUNT dimensions
(but can be named as desired). The remaining dimensions have the following rules:

• The CURRENCY/GROUP dimension is required for the consolidation and/or currency business
rules

• The INTCO dimension used for matching inter-company activity

• The DATASRC dimension is required for elimination and/or consolidation business rules

• The SUBTABLE (flow) dimension is optional, and based on your requirements

About currency conversions
Your application sets do not need to be set up for currency conversions if every monetary amount is
represented in one currency only. If this is the case, the application does not need a Currency-type
dimension or a Rate application, because no currency conversions will be performed.

If the majority of your data is entered in just one currency, you do not need a Currency-type dimension.
However, a few exceptions might exist, and these can be handled by duplicating a few members in the
entity dimension. The classic case is an American corporation having most of its operations in the US, but
just a few subsidiaries operating in foreign countries, for example, one in Mexico and one in Canada. This
type of scenario can be dealt with by just duplicating the few entities representing the foreign operations,
to separate the local currency amounts from the translated amounts. This application would require a Rate
application to store the exchange rates needed for the automatic translation, and a property in the Entity
dimension, indicating which one is the entity in local currency and which one is the one storing the
translated amounts for that entity.

SAP Library: BPC Administration Guide

January 30, 2009 Page 64 of 217

Simple conversion requirements

The following list provides a summary of the application setup required. (These options are provided by
default, with ApShell.)

• The application set must include a Rate application where exchange rates are stored.

• The Entity dimension must include the property CURRENCY (whose values are valid
InputCurrencies)

• The Account dimension must include the property RATETYPE (whose values are valid Account
members in the RATE application)

• The appropriate FXTRANS logic must be available

• The DEFAULT logic must include a call to the FXTRANS logic, if the translation is to be
performed whenever data is entered.

• The Entity dimension must include the property TRANSLATE_TO (whose value is a valid
Entity). For example, the system reads all entities with a non-blank TRANSLATE_TO property,
and translates their values into the entities specified by the TRANSLATE_TO property.

Complex conversion requirements

A more complex scenario exists when you need to store data in the local currency as well as in one or
more reporting currencies for any member in the Entity dimension. An application of this type will also
require the ability to access a Rate application to store the exchange rates used for the automatic
translation.

Requirements

The following list provides a summary of the application setup required.

• The application set must include a Rate application where exchange rates are stored.

• The application must include a Currency-type dimension

• The Currency dimension must include the property REPORTING (whose values are Y or blank)

• The Entity dimension must include the property CURRENCY (whose values are valid
InputCurrencies)

• The Account dimension must include the property RATETYPE (whose values are valid Accounts
in the Rate application)

• The appropriate FXTRANS logic must be available

• The DEFAULT logic must include a call to the FXTRANS logic, if the translation is to be
performed whenever data is entered

The default translation reads all values in local currency (Currency = LC), applies the correct exchange
rate, and writes the results in the appropriate reporting currency (USD, EURO, etc.).

Selecting the correct rate

For the selection of the correct rate, the following rules apply to both simple and complex options. The
source currency is derived by the property CURRENCY of the entity being translated.

The type of rate (AVG, END, etc.) is derived by the property RATETYPE of the account being translated.

The valid rate types are those corresponding to an account of the RATE application belonging to the
GROUP ‘FX Rate’.

Any Account with a RATETYPE that is not part of the GROUP ‘FX Rate’ will be translated with a factor of
1. A special case is the reserved rate named NOTRANS, which will cause the account to be ignored during
the translation. This rate does not need to exist in the list of rates in the RATE application.

Notes:

The default currency translation supplied with the product for multi-currency applications performs a
cross-rate translation, i.e., it multiplies the amount in local currency by the ratio between the rate of the
destination currency and the rate of the source currency. This allows the application to use only one table
of rates for translating any source currency into any destination currency.

SAP Library: BPC Administration Guide

January 30, 2009 Page 65 of 217

Other types of default translations can be defined by using the business rules tables to support these
types of currency translations:

• Ability to use different tables of rates by reporting (destination) currency

• Ability to distinguish between "Multiply" currencies and "Divide" currencies

About intercompany eliminations
The Intercompany dimension type (I) is required in an application if you want to perform currency
conversions and intercompany eliminations. The following are required to support an application to
perform intercompany eliminations.

• The application must include a dimension of type “I” (intercompany).

• The intercompany dimension must include the property ENTITY (whose values are Entity names)

• The Account dimension must include the property ELIMACC (whose values are Account names)

• The Entity dimension must include the property ELIM (whose values are Y or blank)

• The appropriate business rule table must be set up

• A DTS package executing the intercompany logic must be available

All the above will not only make sure that intercompany details can be entered for any account, but it will
also support an automatic elimination-by-level for all desired accounts.

SAP Library: BPC Administration Guide

January 30, 2009 Page 66 of 217

The default elimination logic, to do its job, will be driven by the values entered in the following properties:

Dimension Property Length Content

Account ELIMACC 20
chars

A valid account in this dimension

Entity ELIM 1 char Y or blank

Intercompany ENTITY 20
chars

The entity ID corresponding to this intercompany
member

Currency REPORTING 1char Y or blank

The default elimination logic does the following:

• Scans all base level non-elimination entities (entities having the property ELIM <> Y).

• In case the application has a currency dimension, restrict its action to all reporting currencies
only (currencies having the property REPORTING=Y - Data in local currency cannot be
eliminated because they are in different currencies).

• Eliminate all values of the accounts to be eliminated (accounts having property
ELIMACC<>blank) into the desired plug account (the account specified by the ELIMACC property
itself).

• The elimination will be performed in the “elimination entity” below the first “common parent” (*).

(*) The “common parent” is derived as follows:

The system identifies the 2 entities for which a common parent must be found. The first entity is
the current entity member. The second entity is the entity corresponding to the current
intercompany member. This entity is obtained reading the content of the property ENTITY of the
current intercompany member.

The system searches (in a selected entity hierarchy) the first member that has both entities as
descendants. This is the “common parent”.

Then the system searches, in the immediate descendants of such common parent, a valid
“elimination entity” (an entity having the property ELIM=Y).

This is the entity where the results of the elimination will be stored.

Remarks:

• The default elimination logic does it searches in the first organization of the entity dimension.
This can be modified to have the elimination performed in all hierarchies existing in the entity
dimension

• If no common parent is found, no elimination will take place

• If no elimination entity is found below the first common parent, the next common parent will be
searched.

SAP Library: BPC Administration Guide

January 30, 2009 Page 67 of 217

Adding business rules tables to applications
By default, applications are predefined with a set of business rules tables. For example, the Finance
application comes with the Currency Conversions table, and the LegalApp application comes with all the
available tables: Calculations, Currency Conversions, Intercompany Bookings, Automatic Adjustments,
Carry-Forward, US Eliminations, and Validations.

You can add available tables to an application, or remove tables from an application.

To add business rules tables to applications

1. From the Admin Console, select Application.

2. Select the application for which you want to add the business rule table.

3. From the Manage Applications action pane, select Modify application.

4. Select Change Application Type.

5. Select Modify Application.

6. Under Select Application Option, select the check boxes next to the business rules tables you
want to add to the application. Deselect the check boxes next to the business rules you want to
remove from the application.

7. Select Modify Application.

8. When the progress indicator completes, click OK.

Defining rules
You can define rules for the following types of business processes.

Adding business rules

You can add new business rules to any application's business rule table. After adding a rule, you should
validate and save it.

Upon validation, rules files are converted to LGL files. The BPC rules engine processes the LGL files and
converts them to LGX files, which contain database code ready to be run by the SQL or MDX engines.

To add a business rule

1. From the Admin Console, select the application for which you would like to create a business rule,
then click the Business Rules folder.

2. Select the business rule table for which you would like to add a rule.

3. Enter the appropriate parameters for the rule. See Defining rules.

4. If you would like to save the rule without validating the data entries, select Save without
validation from the action pane, or if you would like to validate and save the rule, select
Validate <business rule table> rule table from the action pane.

Running business rules

There are several ways to run a business rule.

• Perform a data send. When data is sent through BPC for Office or BPC Web, the system runs the
default logic (default.lgf). The default logic typically runs the appropriate currency translation
business rules. While you can add other logic to the default script, we do not recommend it, as
performance may decrease whenever you perform a send task.

• Run a Data Manager package (through DTS or SSIS) that contains a reference to a logic file
(*.LGF). Logic can be applied to a specified region of data that is stored in the database using
any type of logic. You can create new logic files or modify existing ones. For example, an Import
package runs against the default logic unless the Import package is modified to include other
logic files. Each logic file contains one or more stored procedures that runs a specific set of logic
commands.

SAP Library: BPC Administration Guide

January 30, 2009 Page 68 of 217

• Post a journal entry. Upon posting a journal, the system runs logic that is specific to journal
processes. To overwrite the default journal logic, you can create a new script logic file called
Journal.lgf.

Account transformation rules

You can create a new logic file to run an account transformation rule. You run this rule by calling the
stored procedure SPRUNCALCACCOUNT in any logic file.

This procedure is launched using the logic statement:

*RUN_STORED_PROCEDURE=SPRUNCALCACCOUNT(parameters list)

For example:

*RUN_STORED_PROCEDURE=SPRUNCALCACCOUNT([LEGALAPP], [ACTUAL], [USD],
[%SCOPETABLE%], [%LOGTABLE%],[Transformation group],[MAXSTATUS]

)

The following table describes the fields for the account transformation rules table.

Field Name Description

Transformation group The identifier for a group of calculations.

Source account The name of the source account. You can also select values from
TYPELIM* and DIMLIST*.

Source flow The source flow member. You can also select from DIMLIST*.

Source data source The name of the source DataSrc member. You can also select from
DIMLIST*.

Destination account The name of the destination account member. This must be a base
member.

Destination flow The destination flow member. This must be a base member.

Destination data source The name of the destination DataSrc member. This must be a base
member.

Reverse sign If selected, the value of the amount is reversed.

Source period Enter the month to process. It can be an absolute or a relative
amount. Leave blank to use the current month.

Source year Enter a year to process. It can be an absolute or a relative amount.
Leave blank for the current year.

Apply to YTD If selected, the YTD value will be used in the calculation in a
PERIODIC application.

Remark A description for the rule.

Currency conversion business rules

Currency conversion typically runs by default when default logic runs. You can also create a new logic file
to run a currency conversion.

You run this rule by calling the stored procedure SPRUNCONVERSION from any logic file.

SAP Library: BPC Administration Guide

January 30, 2009 Page 69 of 217

*RUN_STORED_PROCEDURE=SPRUNCONVERSION(‘APPLICATION’,’CATEGORY_SET%’,
’%CURRENCY_SET%’,’GLOBAL’,’%SCOPETABLE%’,’%LOGTABLE%’,impact,destination,
ratedimension,maxstatus)

*COMMIT

Parameter Description

Application The application ID.

Category The Category ID.

Currency The currency, Yes , or Multi.

Rateentity The default Entity member for the Rate application.

%SCOPETABLE% %SCOPETABLE% is a variable used by the system to define the
name of a logic table.

%LOGTABLE% %LOGTABLE% is a variable used by the system to define the name of
a Log table.

Impact Not used, but you must enter “N”.

Destination 1 = WB; 2 = Fac2

Ratedimension The member of the simulation dimension, if used.

Maxstatus The maximum status level allowing write access.

The stored procedure SPRUNCONVERSION scans all records found in the selected region of data and
translates them according to the RATETYPE property assigned to the ACCOUNT specified in each record,
based on the following mechanism:

• All ACCOUNTS with no RATETYPE (ratetype = blank) will be translated with a factor of 1

• All ACCOUNTS with the reserved RATETYPE = NOTRANS will not be translated

• All other ACCOUNTS will be translated according to the definitions contained in the table of
parameters called clcFXTRANS.

For information on required properties of the Category dimension, see Setting up a legal consolidation
application set. For information on required properties of the Data Source dimension, see Setting up a
legal consolidation application set.

The following table describes the fields for the currency conversion rules table.

Field name Description

Account rate type The currency conversion type, for example, AVG, END, HIST, taken
from the Account dimension's RATETYPE property. This is the main
driving field, controlling the translation rule to apply to a given
account.

Note that one RATETYPE may generate more than one translated
value. This can be defined by entering more than one entry with the
same RATETYPE in the business rule interface for currency rules.

Source flow This field, combined with the 'Account rate type' field, completes the
definition of the criteria that drive the applicability of a given rule. In
other words, the instruction can be read as follows: "If the account
has such RATETYPE and the FLOW is such and such, then apply this
rule."

This field may contain the following values:

• A valid base level or parent member ID from the FLOW
dimension

SAP Library: BPC Administration Guide

January 30, 2009 Page 70 of 217

Field name Description

• A list of members of the FLOW dimension, as defined filtering
the members using a value of the DIMLIST property (or any
property whose name begins with DIMLIST)

For information about the Flow dimension, see Setting up a legal
consolidation application set.

Destination account The account that stores the specific conversion. If empty, it is the
same as the source account's member.

Destination flow The specific Accdetail member where translations are stored. If
empty, then it is the same as the source subtable's member.

Formula This field can contain any arithmetic expression combining any
defined RATE as per the ACCOUNT dimension of the RATE
application. All rates with the RATETYPE property value of FX TRANS
can be used.

Force closing If checked, force the generation of an additional record where the
member of the destination FLOW is the closing balance. The closing
balance member of the FLOW dimension is identified as the member
with the property FLOW_TYPE = CLOSING.

Apply to periodic This field should only be used in a YTD application for the cases in
which the currency conversion should be performed on the PERIODIC
values and not on the YTD values.

If the box is checked, the engine calculates the difference between
current period and prior period amounts, and it applies to it the rate
specified in RATE_FORMULA field. At the end, the result is added
back to prior period's value as written in current period.

Entity FX type This field can be used to enforce a given set of rules to only apply to
a desired set of ENTITIES. If this field has a value, the rule will only
be applied to the entities having a matching value in a similarly
named property (FX_TYPE) of the ENTITY dimension.

Remarks A short description for this rule.

Formula field

In the FORMULA field, the rates must be enclosed in square brackets:

Examples:

[END]

[END] – [AVG]

The OPENING value of any rate can also be specified adding the prefix “OPE” to the rate itself.

Examples:

[OPEEND] - [END]

[OPEAVG]

These OPENING rates do not need to exist in the RATE cube. For example, if there is an [END] rate, the
currency translation will also automatically recognize a rate called [OPEEND], which simply corresponds to
the [END] rate of the OPENING period (typically last period of last year).

In addition, the RATE_FORMULA field supports the following keywords:

• [AS_IS] Leave untouched a value already existing in the destination currency. This keyword
cannot be combined with other rates in the same line. The only valid exception is the format
[AS_IS]*-1

SAP Library: BPC Administration Guide

January 30, 2009 Page 71 of 217

• [COPYLC] This correspond to applying a rate of 1 in the translation

How the RATE table is selected

While most customers require a single table of rates, there are situations when more than one set of rates
is required. In this situation, the translation procedure uses the RateEntity dimension to select the correct
table of rates to use.

Whenever a destination currency is selected, the procedure searches for a RateEntity member flagged
with this currency in the Currency property. For example, if translating into USD, the system uses the
RateEntity member that has the Currency property set to USD.

If there is no RateEntity flagged as the destination currency, the system will use the RateEntity with
Currency = ‘’ (blank).

In addition to this, some exceptions by ENTITY can be applied. For example, some entities just entering in
the consolidation perimeter may need to be converted at their own specific set of rates. These entities
may have a corresponding RateEntity member in the RATE cube. All ENTITIES having a corresponding
RateEntity member in the RATE cube will use that member as rate table. For example, if there is a
RateEntity member named like the ENTITY USOps, the RateEntity member USOps will be used to translate
the values of entity ENTITY USOps.

The RateEntity member, when representing an ENTITY, may be any of the following:

• A valid base level or parent member ID from the ENTITY dimension of the main cube

• A list of members of the ENTITY dimension, as defined filtering the members using a value of the
DIMLIST property (or any property whose name begins with “DIMLIST”) of such dimension.

Carry-forward rules

Carry-forward rules give you the ability to generate the Opening Balance of any category based on two
main properties:

• Flow_Type in the Flow dimension

• DataSrc_Type in the DatrSrc dimension

This procedure can be used to initialize a new reporting period with the closing balances of the last period
from the previous year into the opening balances of the current period.

In a legal consolidation application, such balances are usually identified as members of the FLOW
dimension. In simpler applications, however, it is also possible to store them as additional accounts in the
ACCOUNT dimension.

Important remark: Currently this procedure is only limited to the copy of the opening balances as found in
the DATASRC dimension members flagged as “I” and “M” in the DATASRC_TYPE property. This means that
the procedure will only copy the “Input” balances and their related “Manual” adjustments. The balances
generated “Automatically” by the consolidation procedure (DATASRC members flagged as “A”) are taken
care of during the consolidation process by the consolidation procedure itself.

The copy-opening process is handled by a stored procedure called SPCOPYOPENING. This procedure is
launched using the logic statement:

*RUN_STORED_PROCEDURE=SPCOPYOPENING(parameters list)

Example:

*RUN_STORED_PROCEDURE=SPCOPYOPENING([LEGALAPP], [ACTUAL], [USD],
[%SCOPETABLE%], [%LOGTABLE%])

For information on required properties of the Category dimension, see Setting up a legal consolidation
application set.

The following table describes the values you can enter for the carry-forward rules.

Field name Description

Source account This is the main driving field, controlling the rule to apply to a given
account. This field may contain the following values:

SAP Library: BPC Administration Guide

January 30, 2009 Page 72 of 217

Field name Description

• A valid base level or parent level member ID from the
ACCOUNT dimension

• A list of members of the ACCOUNT dimension, as defined
filtering the members using a value of the DIMLIST property
(or any property whose name begins with DIMLIST) in such
dimension

Source flow This field controls the applicability of the rule to a given member of the
FLOW dimension. Typically this field will contain the ID of the closing
balance member. Valid values for this field are identical to the source
account above.

Destination account This is the destination account for the rule. Valid values for this field
are identical to Source Account above. If left blank, the destination
account will be the same as the source account.

Destination flow This field controls the ID of the destination FLOW. If left blank the
FLOW will be the same as the source FLOW. Valid values for this field
are identical to the source account above.

Reverse sign If selected, the system reverses the value of the amount.

Data source type Input Only, Manual Only, or ALL.

Same period If selected, the source TIME period is the same as the destination.

Apply to YTD If selected, the YTD value to copy will be calculated if its a PERIODIC
application.

Remark A description for this rule.

Intercompany booking rules

Intercompany booking rules are split into two independent procedures:

• SPICDATA: This procedure can be used to copy the declarations of all entities versus a given
entity by intercompany account. Essentially, it concentrates into each single entity the
declarations of all other entities versus each entity. This mechanism allows the owners of an
entity to run a report matching all its declarations against what the rest of the world has declared
against the entity, without the need to assign to each owner read permits into other entities.

• SPICBOOKING: This procedure can be used to automatically generate the bookings which will
make the intercompany declarations to match. The stored procedure SPICBOOKING is driven by
the table called clcBOOKING_{app}.

For information on the intercompany application structure, see Setting up a legal consolidation
application set.

The following table describes the options for setting up an intercompany booking rule.

Field Name Description

Remark A description for this rule.

Type Seller rule, Buyer rule, or Greatest amount.

Parent matching account A parent account member from the Account dimension or DIMLIST.

Other destination members Blank or force destination. Used to force a target destination
member.

Booking destination data
source

A DataSrc member.

SAP Library: BPC Administration Guide

January 30, 2009 Page 73 of 217

Field Name Description

Max booking amount The maximum amount authorized to book.

Debit account An Account member.

Debit flow A Flow member.

Debit intco An Intco member or blank.

Credit account An Account member.

Credit flow A Flow member.

Credit intco An Intco member or blank.

US Elimination rules

A US Elimination rule controls where in an Entity dimension member the results of eliminations are stored.

You run this rule by calling the stored procedure SPRUNELIM. This stored procedure performs the
eliminations driven by the hierarchies in the Entity dimension and writes the elimination in an Entity
member (property ELIM=Y).

The following table describes the fields to define in the US Elimination table.

Field Name Description

Source data source The data source member from which the amount is taken.

Destination data source The data source member from which the amount is applied.

Remark A user-defined description.

Automatic adjustments

The automatic adjustments process is handled by a stored procedure called SPRUNCONSO. This
procedure is typically launched using the logic statement:

*RUN_STORED_PROCEDURE=SPRUNCONSO(parameters list)

Example:

*RUN_STORED_PROCEDURE = SPRUNCONSO([LEGALAPP], [ACTUAL], [2006.MAR],
[GROUP1], [%LOGTABLE%])

The driving elements of this procedure are:

• The consolidation METHOD by which each ENTITY is consolidated into a GROUP

• The consolidation RULE assigned to each ACCOUNT to consolidate

• The ELIMINATION mechanism, as controlled by each RULE (in turn driving the behavior of each
ACCOUNT)

Basically, the whole process can be explained as follows:

Each source ACCOUNT is assigned a set of DESTINATION ACCOUNTS and a RULE of behavior through the
definitions entered in the Automatic Adjustments business rule table.

For information on required properties of the Data Source dimension, see Setting up a legal
consolidation application set.

The following table describes the values you can enter for the automatic adjustment rules.

Field
Name

Description

SAP Library: BPC Administration Guide

January 30, 2009 Page 74 of 217

Field
Name

Description

Adjustment
ID

The identifier for the adjustment rule.

Source
data
source

This field may contain the following values:

• Blank (all DATASRC members)
• A valid base level or parent member ID from the DATASRC dimension
• A list of members of the DATASRC dimension, as defined by filtering the

members using a value of the DIMLIST property (or any property whose name
begins with “DIMLIST”) in such dimension.

Destination
data
source

This field must contain a valid base level member ID of the DATASRC dimension having
the property DATASRC_TYPE = A (“Automatic elimination”)

Group type
filter

The CONSO_TYPE property value from the Groups (Currency) dimension.

If, for example, you have the GROUP GROUP1 with conso_type = A, all the Automatic
Eliminations with Blank are available for all groups.

The Automatic Eliminations with Group_filter member = A are available for GROUP1
and all groups with Group filter member = A.

Adjustment
type

This field may contain the following values:

• Blank: A generic ELIM rule
• E: “Equity” - This value indicates that this rule is used on the entities using an

Equity method (i.e., having a method of type “E”)
• P: “Proportional” - This value indicates that this rule is used on the entities

using a Proportional method (i.e. having a method of type “P”)
• N: “New” - This value indicates that this rule is used on the entities just

entering into the consolidation perimeter (i.e., having a method of type “N”)
• L: “Leaving” - This value indicates that this rule is used on the entities that are

leaving the consolidation perimeter (i.e. having a method of type “L”)

In case this field has a non-blank value, there are never details associated with it in the
clcELIM table.

Adjustment
level

This field must contain an integer value ranging from 0 to 99 and can be used to order
the sequence of execution of the various ELIM rules, if desired.

Entity
property
filter

This field is only utilized for intercompany eliminations. If this field contains a value, the
system will look for the existence of a corresponding PROPERTY in the ENTITY
dimension, and will only perform the elimination if the ENTITY and the INTCO partner
have the same value in this property.

SAP Library: BPC Administration Guide

January 30, 2009 Page 75 of 217

Field
Name

Description

Other
dimension
filter

This field can be used to define a filter controlling the region where the elimination can
be applied. It can contain the following values:

• Blank (No Filter)
• An expression defining one or more filters. These can be applied to any

combination of the following information:
• Any dimension of the MAIN cube (example: CATEGORY=BUDGET)
• The SIGNEDDATA amount (example: SIGNEDDATA> 10)
• Any ACCOUNT of the OWNERSHIP cube (example: METHOD = 85)
• Any ACCOUNT of the OWNERSHIP cube as defined in Prior period

(example: PPOWN <>0, where PPOWN is Prior period’s POWN account)
• Any ACCOUNT of the OWNERSHIP cube as assigned to the

INTER_COMPANY partner (example: I_POWN < POWN)

The filters can be concatenated with the “AND” operand. Alternatively, any valid SQL
expression filtering the values in any desired way can be used. In this case the syntax
must strictly comply with SQL requirements (single quotes around the members IDs,
etc.)

Forced
destination
members

This field can be used to enforce the destination member of any dimension existing in
the MAIN cube.

This field may contain the following values:

• Blank (No Change)
• An expression enforcing the value for one or more dimensions of the MAIN

cube. Each dimension must be separated by a comma (example:
CATEGORY=BUDGET, ENTITY= NewYorkBranch)

Local
currency

This field can be used to control the reporting currency for which the elimination is to
be performed. It may contain either the ID of a valid reporting currency or it may be
left blank, to indicate that the GROUP currency must be used.

Remark A description of the rule.

Automatic adjustments detail

The automatic adjustments detail table defines the details of the automatic adjustment rules and their
behavior. These rules control the association of each automatic adjustment rule with the existing
ACCOUNTS and, among other things, controls the ID of the ACCOUNTS into which a given account is
transformed.

Field Name Description

Adjustment ID The identifier for the adjustment rule.

Source account This field may contain the following values:

• A valid base level or parent member ID from the ACCOUNT
dimension

• A list of members of the ACCOUNT dimension, as defined
filtering the members using a value of the DIMLIST property
(or any property whose name begins with “DIMLIST”) in such
dimension.

• A list of members of the ACCOUNT dimension, as defined
filtering the members using a value of the TYPELIM property
(or any property whose name begins with “TYPELIM”) in such
dimension.

Reverse sign If “Y” the value of the SIGNEDDATA amount is reversed.

SAP Library: BPC Administration Guide

January 30, 2009 Page 76 of 217

Field Name Description

Destination "All" account This field defines the ID of the first of four possible destination
ACCOUNTs. It is linked to the "ALL" formula field of the Consolidation
Rules Formulas table, which defines how the amount is generated.

This field may contain the following values:

• Blank (the destination Account is equal to the source Account)
• A valid base level or parent member ID of the ACCOUNT

dimension
• A list of members of the ACCOUNT dimension, as defined by

filtering the members using a value of the DIMLIST or the
TYPELIM property (or any property whose name begins with
“DIMLIST” or “TYPELIM”) in the dimension.

• A list of members of the ACCOUNT dimension, as defined by
filtering the members using a value of the DIMLIST property
(or any property whose name begins with “DIMLIST”) in the
dimension.

• The expression PROP(PropertyName), where PropertyName is
the name of a valid PROPERTY in the ACCOUNT dimension. In
this case, the destination account is the value of the property
for the current source ACCOUNT.

Use caution when the destination represents a list of accounts, as
multiple records will be generated.

Destination "Group"
account

This field defines the ID of the second of four possible destination
ACCOUNTs. It is linked to the Group formula field from the
Consolidation Rules Formulas table, which defines how the amount is
generated.

This field may contain the same elements as defined in the
Destination "All account field. However, if left blank, it will NOT
default to the source account, but it will generate NO record.

Destination "Minority"
account

This field defines the ID of the third of four possible destination
ACCOUNTs. It is linked to the Minority formula field from the
Consolidation Rules Formulas table, which defines how the amount is
generated.

This field may contain the same elements as defined in the
Destination "All" account field. However, if left blank, it will NOT
default to the source account, but will generate NO record.

Destination "Equity"
account

This field defines the ID of the fourth of four possible destination
ACCOUNTs, and has a behavior of its own. The value is linked to the
"ALL" formula field of the from the Consolidation Rules Formulas
table, which defines how the amount is generated. However, it applies
only to the Equity methods.

The account defined in this field will replace the value of the
Destination "All" account field, in case the current ENTITY is being
consolidated using a METHOD of type "E" (Equity).

This field may contain the same elements as defined in the
Destination "All account field. If left blank, the definitions of the
"ALL" formula field will apply.

Rule ID This field must contain the name of a valid Rule ID from the
Consolidation Rules table. This rule is used to define how to calculate
the amount of the different destination ACCOUNTS.

SAP Library: BPC Administration Guide

January 30, 2009 Page 77 of 217

Field Name Description

Source flow This field may be used to restrict the applicability of the current
Elimination to some members of the FLOW dimension. It may contain:

• Blank (any FLOW members)
• A valid base level or parent member ID from the FLOW

dimension
• A list of members of the FLOW dimension, as defined filtering

the members using a value of the DIMLIST property (or any
property whose name begins with “DIMLIST”) in such
dimension.

Destination flow This field can be used to enforce the ID of the member of the FLOW
dimension. It only supports an explicit FLOW ID or can be left blank to
leave the member unchanged.

Force closing This field can be set to Y to force the generation of an additional record
where the member of the destination FLOW is the closing balance. The
closing balance member of the FLOW dimension is identified as the
member with the property FLOW_TYPE = CLOSING.

Forced Intco member This field can be used to enforce the ID of the member of the INTCO
dimension. It only supports an explicit INTCO ID or can be left blank to
leave the member unchanged.

Swap Entity - Intco This field may contain the following values:

• Blank or N: Nothing should be changed
• Y: The ID of the Entity dimension member is swapped with

the ID of the INTCO dimension member.

Apply to periodic This field should only be used in a YTD application for the cases in
which the ownership percentage should be applied on the PERIODIC
values and not on the YTD values.

If this field is set to Y, the engine calculates the difference between
current period and prior period amounts, and it applies to it the
Ownership percentage specified in the "ALL" formula, Group
formula, and Minority formula fields of the Consolidation Rules
table. At the end, the result is added back to prior period’s value as
written in current period.

Remark A description of the rule.

Validation rules

Validation rules allow you to check the integrity and correctness of entered values, before signing off such
data as “approved.” The action of this procedure is limited to the comparison of several accounts (or sets
of accounts) and to post the difference, if any, into some “error” account. The purpose should be to have
zeros in all these “error” accounts.

The validation process is handled by a stored procedure called SPRUNVALID.

This procedure is launched using the logic statement:

*RUN_STORED_PROCEDURE=SPRUNVALID(parameters list)

For example:

*RUN_STORED_PROCEDURE=SPRUNVALID([LEGALAPP], [ACTUAL], [USD],
[%SCOPETABLE%], [%LOGTABLE%])

The following table describes the fields to define in the validation table.

SAP Library: BPC Administration Guide

January 30, 2009 Page 78 of 217

Field Name Description

Validation account The member ID of the 'error' account.

Remark A description for the rule.

Validation operand =, <, >, >=,<=

If the sign is =, the total of the left account must be equal to the
total of the right account *-1

If the sign is >, the total of the left account must be greater than the
total of the right account *-1

If the sign is <, the total of the left account must be smaller than the
total of the right account *-1

Other source dimensions Blank or a filter criteria for the original data extraction. Used to limit
the selection on one dimension.

Other destination dimensions Blank or a forced destination. Used to force a target destination’s
dimension.

Applicable periods Blank or one or more time periods.

Validation tolerance Used to determine a limitation in the Value.

All validations compare the Left part with the right part (ACCOUNT_L with ACCOUNT_R). You can have
more than one account in the left or in the right. The system calculates all the accounts on the left and
compares it with all the accounts on the right.

Here are some examples:

• TOTAS00000 Total Asset = 1000

• TOTLI00000 Total Liabilities = 990

If the validation sign is =, 10 is generated in the validation account because 1000 is not equal to 990.

If the validation sign is <, 10 is generated in the validation account because 1000 is not smaller than 990.

If the validation sign is >, nothing is generated in the validation account because 1000 is greater than
990.

Validation rules detail

In the Fact table, the validation compares the left side (1) with the right side (2).

ACCOUNT1 FLOW1 SIGN1 ACCOUNT2 FLOW2 SIGN2

A0001 F_CLO + A1000 F_CLO +

A0002 F_CLO +

In this example, we valid the following:

A0001 (F_CLO) + A0002 (F_CLO) = A1000 (F_CLO)

The following table describes the fields to define in the Validation rules detail table.

Field Name Description

Validation account The member ID of the 'error' account.

SAP Library: BPC Administration Guide

January 30, 2009 Page 79 of 217

Field Name Description

Account 1 The member ID of the “left side” account.

Flow 1 Blank or the “left side” member of the FLOW dimension.

Sign 1 The operator used in the Left part of calculation (+ or -)

Account 2 The member ID of the “right side” account.

Flow 2 Blank or the “right side” member of the FLOW dimension

Sign 2 The operator used in the Right part of calculation (+ or -)

Remark A description for the rule.

Using the Business Rule Library
The business rule library allows you to set up global business rules that process legal consolidation data at
the application set level.

About the Business Rule Library

The business rule library allows you to set up global business rules for processing legal consolidation data
at the application set level. Once the headers, methods and rules are defined, they apply to all related
business rules tables within an application set.

You populate the following library tables:

• Consolidation rules

• Consolidation methods

• Consolidation rules formulas

Adding business rule library entries

You can add a new business rule to the business rule library. Once defined, the rule can be used in any
application in the application set.

To add a business rule library entry

1. From the Admin console, click the Business Rule Library folder.

2. Select Consolidation Headers from the navigation pane, then define a rule name, description,
and type. See Consolidation Headers.

3. Click Save without validation or Validate Consolidation Rules rule table from the action
pane.

4. Select Consolidation Methods from the navigation pane, then add a new method for the rule, if
required. See Consolidation Methods.

5. Click Save without validation or Validate Consolidation Rules rule table from the action
pane.

6. Select Consolidation Rules from the navigation pane, then define the parameters for the rule.
See Consolidation Rules.

7. Click Save without validation or Validate Consolidation Rules rule table from the action
pane.

SAP Library: BPC Administration Guide

January 30, 2009 Page 80 of 217

Consolidation rules

This simple table defines the list of business rules that can be used in the application set. The only extra
thing it does (other than giving them an ID and a description), is restrict their applicability, if desired, to
just some type of consolidation METHOD.

You define a name and description, and a consolidation method. The consolidation method (Rule type)
limits the use of the rule to the specified type of consolidation method.

Field Name Description

Rule ID The identifier for this rule. For example, RULE01.

Rule description A description for this rule. For example, Equity, 100% Minority Part,
Dividends, Stock Holder Equities, or IC elimination.

Rule type The consolidation method:

• Proportional - Uses Proportional method elimination rules
• Equity - Uses Equity method elimination rules
• ALL (or blank)

Consolidation methods

The Consolidation Method table describes the Entity methods used in the consolidation rules.

Field Name Description

Method code The method code. The value can be a single value (10) or a list
(10,20,25,30).

99 - All Intco (even if the Entity is not in the group)

Method name The description for this method. For example, Leaving, Equity,
Proportional, Global, or Holding.

Method type The Entity method type. For example, New, Holding, Global, Proportional,
Equity, Leaving (End of Year), Leaving (During the Year)

Consolidation rules formulas

The Consolidation Rules Formula table controls how the amounts or the destination accounts should be
calculated. The behavior is controlled by the rule being used, the consolidation method assigned to the
current entity, and its INTERCOMPANY partner, if applicable.

Field Name Description

Rule ID The name of the rule. The drop-down list contains the rules defined in
the Consolidation Rules table.

See Consolidation Rules

Entity Method A valid Entity method, as defined in the Consolidation Methods table, or
a list of entity methods separated by commas.

See Consolidation Methods

IntCo Method A valid Entity Method, as defined in the Consolidation Method table, a list
of entity methods separated by commas, or 99 for all methods.

See Consolidation Methods

"All" Formula An expression that represents the percentage (or formula) to apply to
the Destination “All” account property from the Automatic
Adjustment Detail table.
The value can be an arithmetic expression combining any defined
percentage in the Account dimension of the Ownership application. All
percentages where the property 'IS_INPUT' is equal to 'Y' can be used.

SAP Library: BPC Administration Guide

January 30, 2009 Page 81 of 217

Field Name Description

Here are some guidelines:

• The members must be enclosed in square brackets. For
example, [POWN], [PCTRL], [POWN]

• Add the prefix 'P' to the percentage to use the Prior value. For
example, [PPOWN], [PPVOTE]

• Add the prefix 'I_' to the percentage to add the Intco value. For
example, [I_POWN]

• The syntax of the prior value can be combined with the syntax
of the INTCO value as follows: [I_PPOWN]

Group formula An expression that represents the percentage (or formula) to apply to
the Destination "Group" account from the Automatic Adjustment
Detail table.
The value can be an arithmetic expression combining any defined
percentage as per the Account dimension of the Ownership application.
All percentages where the property 'IS_INPUT' is equal to 'Y' can be
used. The percentage must be enclosed in square brackets. (See the
"All" formula field, above, for further details).

Minority formula An expression that represents the percentage (or formula) to apply to
the Destination "Minority" account from the Automatic Adjustment
Detail table.
An arithmetic expression combining any defined percentage as per the
Account dimension of the Ownership application.
All percentages where the property 'IS_INPUT' is equal to 'Y' can be
used. The percentage must be enclosed in square brackets. (See the
"All" formula field, above, for further details).

Remark Text description for this rule.

SAP Library: BPC Administration Guide

January 30, 2009 Page 82 of 217

Using Script Logic

Script logic allows you to write your own logic files using an MDX or SQL scripting language.

Logic Assistant
You can use the Logic Assistant for logic functions; for example, you can look up functions, choose
parameters, and then paste a formatted statement into your logic file.

You can look up both Logic module statements and user-defined functions. Use the UDF (user-defined
functions) tab of the logic assistant dialog box to look up and use UDF functions. The UDF tab displays
both system-supplied functions and user-defined functions.

To use the Logic Assistant

1. Create a new logic file or open an existing logic file.

2. Click the Logic Assistant menu on the action pane.

3. Select the UDF tab to look up a UDF function or the Logic tab to look up a logic statement.

4. Select a statement category and then choose a statement or function name.

o A short description of the statement or function is displayed in the dialog box. To see a
detailed description select the More info button.

5. Select the Next button. The Logic Assistant displays a statement or UDF function wizard.
Depending on the type of statement or function, the system guides you to creating the new logic
statement. After completing each screen, select Next to continue.

6. When you reach the final screen, select the Paste button to add the statement to your logic file.

7. The logic assistant stays open so that you can create a new statement. Select the Close button
when you are finished adding logic statements.

Adding UDF functions to the Logic Assistant
You can add UDF functions to the Logic Assistant by creating your own logic libraries and placing them
into the Logic Library directory on the server. The Logic Assistant automatically reads the Logic Library
directory and adds your UDF functions to the UDF tab.

To add UDF functions to Logic Assistant, take the following steps:

1. Create your logic library file and save it with an .LGL extension.

2. Copy the logic library file to the <BPC>\Webfolders\<AppSet>\SystemLibrary\Logic Library
folder. Where <BPC> is the root directory for BPC on the server and <AppSet> is the application
set name. For example:

C:\BPC\Webfolders\ApShell\SystemLibrary\Logic Library

3. Click the Logic Assistant menu on the action pane.

4. Select the UDF tab, and then select the file you created in the Statement category list to
display your UDF functions in the Statement name list on the right.

Using the Logic Debugger

The Logic Debugger allows you to test and run your logic files and to debug logic before you run it against
live data. This applies to both default logic and other logic files; default logic files are in the default.xls
workbook for each application and other logic is in workbooks with user-defined names.

You can run logic against live data while using the debugger by using the Simulation option on
the General tab.

The debugger has four tabs that define how you want to run your logic files.

General

SAP Library: BPC Administration Guide

January 30, 2009 Page 83 of 217

The general tab determines if you want to simulate expected results where changes do not affect
the database, to send differences to the database, and to view log file setup.

Region

This tab allows you to set up the member set that the logic is run against. You can choose all
members or allow the logic system to base the region on the members used in a data file. If you
choose members, you can leave a dimension blank to select all members, but you must choose at
least one member of one dimension.

Dynamic Formula

This tab allows you to enter a logic formula that is combined, at the beginning, with the logic file
you are testing. This is helpful if you want to set up certain conditions, but do not want to save
those conditions in the logic file after testing.

Optimize option

This tab allows you to set advanced logic optimization options. You can set the memory
management and the MDX Query type. There are three types of MDX queries that can be
generated by the logic engine:

Mulit-axis - Builds the MDX query based on the number of dimensions in the member set
that have more than one member. An axis is assigned to each dimension that has more
than one member in the member set. The sub-cube for the query therefore can have
many axes depending on the member set or region of data against which the query is run.

2-axis, crossjoin - Queries that are "flattened" so that they have no more than 2 axes by
nesting multiple dimensions in the rows of the query. For the crossjoin type, the query
first checks that a value exists in each cell in the application (MSAS) database. If data
exists in any of the cells referenced by the query, those cells are included in the query,
otherwise they are ignored.

2-axis, nonemptycrossjoin - Queries that are "flattened" so that they have no more than 2
axes by nesting multiple dimensions in the rows of the query. For the nonemptycrossjoin
type, the query checks that a value exists both in the fact table (SQL) and application
(MSAS). If data exists in both the fact table AND the application database, those cells are
included in the query, otherwise they are ignored.

To use the logic debugger

1. Open Admin Console and go to the Script Logic menu and select the logic file. You can then see
the Logic Debugger menu on the action pane.

Note: If you run the Logic Debugger without a logic file open, you are asked to open a logic
file first.

2. Select each tab and choose the options you want. On the Dynamic formula tab, you can choose
to use the Logic Assistant to paste logic functions in the Dynamic Formula area.

3. Select the Run Logic button.

4. When finished, select the Exit button.

The BPC MDX library
BPC provides several MDX functions that you can use in your dimension rule formulas. You can use some
of these MDX functions in advance rule formulas as well.

A majority of the MDX functions define industry-standard financial ratios. You can use ratios to evaluate
the performance of your business and identify potential problems. Ratios expose factors such as the
earning power, solvency, efficiency, and debt load of your business.

This section also discusses user-defined functions. The term 'user-defined functions' comes from Microsoft
Analysis Services. BPC supplies user-defined functions, but you can create your own user-defined
functions as well.

Common MDX functions

The following table describes some of the more common MDX functions. For additional MDX functions, see
the Analysis Services Manager Help and look for help on MDX expressions and the function list.

SAP Library: BPC Administration Guide

January 30, 2009 Page 84 of 217

MDX Function Description

Ancestor Returns the ancestor of a member at a specified level.

ClosingPeriod Returns the last sibling among the descendants of a member at a level.

Cousin Returns the member with the same relative position under a member as the
member specified.

Current Member Returns the current member along a dimension during an iteration.

Default Member Returns the default member of a dimension.

FirstChild Returns the first child of a member.

FirstSibling Returns the first child of the parent of a member.

IsEmpty Determines if an expression evaluates to the empty cell value.

Item Returns a member from a tuple.

Lag Returns a member prior to the specified member along the member's
dimension.

LastChild Returns the last child of a member.

LastSibling Returns the last child of the parent of a member.

Lead Returns a member further along the specified member's dimension.

Members Returns the member whose name is specified by a string expression.

NextMember Returns the next member in the level that contains a specified member.

OpeningPeriod Returns the first sibling among the descendants of a member at a level.

ParallelPeriod Returns a member from a prior period in the same relative position as a
specified member.

Parent Returns the parent of a member.

PrevMember Returns the previous member in the level that contains a specified member.

Aggregate Returns a calculated value using the appropriate aggregate function, based
on the context of the function.

Avg Returns the average value of a numeric expression evaluated over a set.

CoalesceEmpty Coalesces an empty cell value to a number.

Correlation Returns the correlation of two series evaluated over a set.

Count Returns the number of tuples in a set, empty cells included unless the
optional EXCLUDEEMPTY flag is used.

Covariance Returns the covariance of two series evaluated over a set (biased).

CovarianceN Returns the covariance of two series evaluated over a set (unbiased).

IIf Returns one of two values determined by a logical test.

LinRegIntercept Calculates the linear regression of a set and returns the value of b in the
regression line y = ax + b.

SAP Library: BPC Administration Guide

January 30, 2009 Page 85 of 217

MDX Function Description

LinRegPoint Calculates the linear regression of a set and returns the value of y in the
regression line y = ax + b.

LinRegR2 Calculates the linear regression of a set and returns R2 (the coefficient of
determination).

LinRegSlope Calculates the linear regression of a set and returns the value of a in the
regression line y = ax + b.

LinRegVariance Calculates the linear regression of a set and returns the variance associated
with the regression line y = ax + b.

Max Returns the maximum value of a numeric expression evaluated over a set.

Median Returns the median value of a numeric expression evaluated over a set.

Min Returns the minimum value of a numeric expression evaluated over a set.

Stdev Returns the standard deviation of a numeric expression evaluated over a set
(unbiased).

StdevP Returns the standard deviation of a numeric expression evaluated over a set
(biased).

Sum Returns the sum of a numeric expression evaluated over a set.

MDX formula syntax

BPC dimension and advanced rule formulas are based on the multi-dimensional expression language used
by Microsoft SQL Analysis Services, called MDX. For details on the syntax and usage of this powerful
language, you should consult the Microsoft SQL Analysis Services help.

Advanced rules formulas can also be based on Structured Query Language (SQL). Please consult the
appropriate reference guides for more information and examples of using SQL.

Syntax basics

• The calculated member, which is the member into which the calculated values are written in the
application, must be preceded with a pound (#) sign everywhere in the formula.

• When the dimension name is omitted from the left side of the formula, the ACCOUNT dimension
is assumed. If it is omitted from the right side of the formula the dimension is automatically
derived by Analysis Services.

• The right side expression is not enclosed in single quotes.

• If the calculated member is used on the right side of the formula, it must be enclosed in square
brackets [].

• Remarks are denoted by double forward slashes (//). Any text to the right of double slashes is
ignored during validation. This way, you can put remarks in the rules file to improve readability.

• Brackets are required by SQL when passing parameters that contain delimiters like "." or other
special characters, to let the rules engine better understand where the parameter begins and
where it ends. This is also true when a parameter contains a set of comma-delimited members as
in the following:
[2001.JAN, 2001.FEB]

Note: We recommend that you use brackets around parameters to be sure that they are parsed
correctly.

MDX syntax exceptions

There are two exceptions to MDX syntax with BPC:

• Replace the keyword AS with an equal (=) sign

• Do not use single quotes around expressions

SAP Library: BPC Administration Guide

January 30, 2009 Page 86 of 217

For example:

[ACCOUNT].[#GROSSSALES] = -[ACCOUNT].[UNITS]*[ACCOUNT].[INPUTPRICE]

[ACCOUNT].[#COST] = -[ACCOUNT].[#GROSSSALES]*80/100

Note that this structure:

{member} = {expression}[, solve_order = n]

...is the normal syntax for calculated members required by MDX queries. The only exceptions are the
equal sign ("=") in place of the “AS” keyword and the lack of single quotes around the expression. The
above formula can also be written in a simpler format where the dimension name is omitted, for example:

#GROSSSALES = -UNITS*INPUTPRICE
#COST = -[#GROSSSALES]*80/100

Building dimension rule formulas

BPC gives you the ability to define very powerful rule formulas for calculating dimension members. BPC
uses the MDX (multi-dimensional expression) language used by Microsoft Analysis Services. You can use
any Microsoft MDX functions to create dimension rule formulas. You enter formulas using the MDX syntax,
in the Formula column in a member sheet.

Note: For more information about Microsoft's MDX reference, see MDX Reference
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/olapdmad/agmdxbasics_04qg.asp?frame=true) at the Microsoft Web site. For a complete list of
Microsoft MDX functions, see the MDX function list
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/olapdmad/agmdxfunctions_9elw.asp).

Dimension files

You define your dimension rules formulas in dimension Excel files that you can access from the eAdmin >
Manage Dimensions dialog box. When you validate these files, the dimension rules formulas are gathered
together and placed in dimension-specific rules files.

Note: In order to use formulas in a dimension you must add a property called 'Formula' to the member
sheet using the Manage Dimensions task in the Admin module. 'Formula' is a user-defined
property, so you must define the length of the field. Enter a field length that is at least equal to
the length of your longest formula.

Simple rule formula examples

Following are some examples of simple MDX formulas that can be used in the Formula column for an
account.

Task Syntax and example

Adding two accounts Syntax: [dimension].[account1] + [dimension].[account2]

Example (PreTax Income): [Account].[Operating Income] +
[Account].[OtherExp]

Adding a range of
accounts

Syntax: [dimension].[account1]:[dimension].[account2]

Example (Total Personnel Exp):
SUM([Account].[Salaries]:[Account].[Commission])

Calculating a
percentage

Syntax: [dimension].[account1] / [dimension].[account2]

or (to prevent division by zero):
Iif([dimension].[account1] = 0, Null,
[dimension].[account2]/[dimension].[account1])

Example (Gross Margin Pct): Iif([Account].[Revenue] = 0, Null,
[Account].[Gross Margin]/[Account].[Revenue])

Multiplying by a
factor

Syntax: [dimension].[account1]*[dimension].[account2]

Example (Taxes): [Account].[Pretax Income] * -0.35

http://msdn.microsoft.com/library/default.asp?url=/library/en-
http://msdn.microsoft.com/library/default.asp?url=/library/en-

SAP Library: BPC Administration Guide

January 30, 2009 Page 87 of 217

Task Syntax and example

Calculating a YTD
value

Syntax: [dimension].[account1],[Measures].[YTD]

Example (Current Year Net Income): ([Account].[Net Income],
[Measures].[YTD])

Advanced rule formula examples

Advanced rule formulas include movement calculations and allocating expenses based on entity type.

Movement calculations

Movement calculations define the copying or "movement" of data from one time period to another. In the
formula examples below, [AccRec] is the accounts receivable account, and [AccPay] is the accounts
payable account.

Account Description Formula

Mvmt Acc Rec Movement in Accounts
Receivable

Iif([Time].CurrentMember.Children.Count=0,
[Account].[AccRec] - ([Account].[AccRec],
[Time].PrevMember),
SUM(Descendants([Time].CurrentMember,
[Time].[Month], LEAVES)))

Mvmt
Inventory

Movement in Inventory Iif([Time].CurrentMember.Children.Count=0,
[Account].[Inventory] - ([Account].[Inventory],
[Time].PrevMember),
SUM(Descendants([Time].CurrentMember,
[Time].[Month], LEAVES)))

Mvmt Acc Pay Movement in Accounts
Payable

Iif([Time].CurrentMember.Children.Count=0,
[Account].[AccPay] - ([Account].[AccPay],
[Time].PrevMember),
SUM(Descendants([Time].CurrentMember,
[Time].[Month], LEAVES)))

Mvmt Work
Cap

Movement in Working Capital SUM([Account].[Mvmt Acc Rec]:[Account].[Mvmt
Acc Pay])

Allocating expenses based on entity type

The following examples assume there is an Entity property named "Function." If an Entity has the Function
"SM", the "Total Dept Exp" is allocated to the "S&M Exp" account. If an Entity has the Function "RD", the
"Total Dept Exp" is allocated to the "R&D Exp" account. If an Entity has the Function "CORP", the "Total
Dept Exp" is allocated to the "G&A Exp" account.

Account Description Formula

S&M Exp Sales & Marketing Expense Iif([Entity].CurrentMember.Children.Count = 0,
Iif([Entity].CurrentMember.Properties("Function")
= "SM", [Account].[Total Dept Exp], Null),
SUM(Descendants([Entity].CurrentMember,
[Entity].[LEV1], LEAVES)))

R&D Exp R&D Expense IIf([Entity].CurrentMember.Children.Count = 0,
IIf([Entity].CurrentMember.Properties("Function")
= "RD", [Account].[Total Dept Exp], Null),
SUM(Descendants([Entity].CurrentMember,
[Entity].[LEV1], LEAVES)))

SAP Library: BPC Administration Guide

January 30, 2009 Page 88 of 217

G&A Exp G&A Expense If([Entity].CurrentMember.Children.Count = 0,
IIf([Entity].CurrentMember.Properties("Function")
= "CORP", [Account].[Total Dept Exp], Null),
SUM(Descendants([Entity].CurrentMember,
[Entity].[LEV1], LEAVES)))

Using the reserved function-EvCPN

The rules module supports an implicit function named EvCPN that can be used in formulas like any other
user-defined function. EvCPN (Current Period Number) returns the number of the period being executed in
the query. For example if you run a query for March and April, March is assigned the number 1 and April
the number 2.

This feature can be used to decide whether a calculated value should be retrieved from the application or
from memory. In this context "memory" means the result of the calculation performed by the query. For
example, if you need to read a value from February, it can come from the application (so that February
does not get re-calculated) and if you read it from March or April you must read the calculated result you
have in memory.

Following is an example of how to use EvCPN:

[ACCOUNT].[~CPN]=EVCPN // dummy CPN account

*FUNCTION TLAG(%ACC%,%LAG%)

 iif([ACCOUNT].[~CPN]<(%LAG%+1),

 ([ACCOUNT].[%ACC%], [time].currentmember.lag(%LAG%)),

 ([ACCOUNT].[#%ACC%],[time].currentmember.lag(%LAG%)))

*ENDFUNCTION

[ACCOUNT].[#Z] = TLAG(Z,1) + X – Y

The above example enables you to correctly read the opening value of account Z without committing each
period to the application in the process.

EvCPN supports a numeric parameter that can be used to restrict the function from calculating the period
number beyond a certain number of periods. This could be used to make the calculation of CPN run faster.
For example, if you need to test only whether you are in the first period or not (like in the above case),
the function does not need to try and assign a period number to all processed periods. It is enough to
assign the value of 2 to all periods beyond the first. To achieve this the rule can be written as follows:

[ACCOUNT].[~CPN]=EVCPN(1)

If you run the calculation from March, the function expands at run time into something like:

[ACCOUNT].[~CPN]=IIF([TIME].currentmember.name="2001.MAR",1,2)

All periods other than March have a period number greater than 1, which is all that the function call
TLAG(Z,1) needs to know.

MDX Subroutines

You can use the MDX subroutines Initialize_Elim and Eliminate_Org in your dimension rules formulas.

Initialize_Elim

Initializes an elimination organization with a specified value.

eliminate_org

Perform an elimination on the given organization.

Using liquidity analysis ratios

Liquidity analysis ratios are ratios of assets versus liabilities. These ratios generally indicate a company's
ability to cover short-term obligations. Liquidity analysis ratios include:

• CurrentRatio

SAP Library: BPC Administration Guide

January 30, 2009 Page 89 of 217

• QuickRatio

• NetworkCapRatio

currentratio

CurrentRatio(%CURRENTASSET%,%CURRENTLIAB%)

Calculates the current ratio. The current ratio is a general indicator of the business's ability to meet its
short-term financial commitments. This ratio assumes that all current assets, if required, can be converted
to cash immediately in order to meet all current liabilities immediately.

QuickRatio

QuickRatio(%CASH%,%ACCREC%,%CURRENTLIAB%)

Calculates a quick ratio, also called the acid test ratio. A quick ratio is a current ratio modified to provide a
more prudent measure of short-term liquidity.

NetworkCapRatio

NetWorkCapRatio(%CURRENTASSET%,%CURRENTLIAB%,%TOTALASSET%)

Calculate Net working Capital Ratio. This is another indicator of a company's ability to satisfy short-term
debt.

Using basic financial functions

This section contains definitions for two basic financial functions supplied with BPC:

• AvgBal - Average balance

• Growth

avgbal

AvgBal(%ACCOUNT%)

Calculates the account average. This result can be used in other functions such as ROA, ROE, and others.

Growth

Growth(%ACCOUNT%)

Calculates account growth rate. This result is used in sales growth, expense growth, and other functions.

Using profitability analysis ratios

Profitability analysis ratios provides tools that help you understand the profitability of your business.
Profitability ratios include:

• ROA — Return on assets

• ROE — Return on equity

• ROCE — Return on common equity

• CTS — Cost of goods sold to sales

• NPM — Net profit margin

• GPM — Gross profit margin

• SMGAEXPS — Sales, general and administrative expense to sales

ROA

ROA(%NETINCOME%,%AVGTOTALASSET%)

Calculates Return on Assets (ROA). This ratio measures the ability of general management to use the total
assets of the business in order to generate profits.

ROE

ROE(%NETINCOME%,%AVGSTOCKEQT%)

Calculates Return on Equity (ROE). Measures the returns earned on both preferred and common
stockholders' investments.

SAP Library: BPC Administration Guide

January 30, 2009 Page 90 of 217

ROCE

ROCE(%NETINCOME%,%AVGCOMMONSTOCKEQT%)

Calculates Return on Common Equity (ROCE). Measures the return on common stockholders' investments
only.

cts

CTS(%COSTOFGOODS%,%REVENUE%)

Calculates the cost of goods sold to sales (CTS).

NPM

NPM(%NETINCOME%,%REVENUE%)

Calculates the Net Profit Margin (NPM). The net profit margin, also known as the trading profit margin,
measures trading profit relative to sales revenue. For example, a trading profit margin of 10% means that
every $1.00 of sales revenue generates $0.10 in profit before interest and taxes. Some industries have
low margins, which are compensated for by high volumes. Conversely, high margin industries can be low
volume. Higher than average net profit margins for the industry can be an indicator of good management.
The Net Profit Margin is calculated by Net Profit before Interest & taxes divided by Sales Revenue times
100 to give X%.

GPM

GPM(%GROSSMARGIN%,%REVENUE%)

Calculates Gross Profit Margin (GPM).

SMGAEXPS

SMGAEXPS(%SMEXP%,%GAEXP%,%REVENUE%)

Calculates Sales, General and Administrative EXPense to Sales (SMGAEXPS).

Using activity and efficiency analysis ratios

Activity and efficiency analysis ratios measure the efficiency of asset use. Activity and efficiency analysis
ratios include:

• ATR — Asset turnover ratio

• ARTR — Accounts receivable turnover ratio

• ACP — Average collection period

• APTR — Accounts payable turnover ratio

• ITR — Inventory turnover ratio

• AAI — Average age of inventory

• STA — Sales to total asset ratio

• DAYSREC — Days in receivables

• DAYSPAY — Days in payable

• DAYSINV — Days in inventory

ATR

ATR(%REVENUE%,%AVGTOTALASSET%)

Calculates Asset Turnover Ratio.

ARTR

ARTR(%REVENUE%,%AVGACCREC%)

Calculates Accounts Receivable Turnover Ratio (ARTR).

ACP

ACP(%ARTR%,%DAYSOFYEAR%)

Calculates the Average Collection Period (ACP). The DAYSOFYEAR parameter can be either 365 or 360.

APTR

APTR(%COSTOFGOODS%,%AVGACCPAY%)

SAP Library: BPC Administration Guide

January 30, 2009 Page 91 of 217

Calculates Accounts Payable Turnover Ratio (APTR).

ITR

ITR(%COSTOFGOODS%,%AVGINVENTORY%)

Calculates Inventory Turnover Ratio (ITR).

aai

AAI(%ITR%,%DAYSOFYEAR%)

Calculates Average Age of Inventory (AAI). The DAYSOFYEAR parameter can be either 365 or 360.

STA

STA(%REVENUE%,%TOTALASSET%)

Calculates the Sales to Total Asset (STA) ratio.

DAYSREC

DAYSREC(%ACCREC%,%REVENUE%,%DAYSOFYEAR%)

Calculates Days in Receivables (DAYSREC). The DAYSOFYEAR parameter can be either 365 or 360.

DAYSPAY

DAYSPAY(%ACCPAY%,%COSTOFGOODS%,%DAYSOFYEAR%)

Calculates Days in Payable (DAYSPAY). The DAYSOFYEAR parameter can be either 365 or 360.

DAYSINV

DAYSINV(%INVENTORY%,%COSTOFGOODS%,%DAYSOFYEAR%)

Calculates Days in Inventory (DAYSINV). The DAYSOFYEAR parameter can be either 365 or 360.

Using capital structure analysis ratios

Capital structure is the balance between debt and equity in a company. These ratios give you insight into
the capital structure of your company. Capital structure analysis ratios include:

• DR — Debt ratio

• DTER — Debt to equity ratio

• ICR — Interest coverage ratio

• DCR — Debt coverage ratio

DR

DR(%TOTALLIAB%,%TOTALASSET%)

Calculates the Debt Ratio (DR). Debt Ratio is total liabilities divided by total assets.

DTER

DTER(%DEBT%,%EQUITY%)

Calculates Debt to Equity Ratio (DTER).

ICR

ICR(%OPERINCOME%,%PAYINTEREST%)

Calculate Interest Coverage Ratio (ICR).

DCR

DCR(%NETINCOME%,%NONCASHEXP%,%TOTALDEBT%)

Calculates the Debt Coverage Ratio (DCR).

Using capital market analysis ratios

Capital market analysis ratios indicate a company's ability to with the confidence of the stock market.
Capital market analysis ratios include:

• EPS — Earnings per share

SAP Library: BPC Administration Guide

January 30, 2009 Page 92 of 217

• PER — Price earnings ratio

• BVPS — Book value per share

• MBR — Market to book ratio

• DY — Dividend yield

• DP — Dividend payout

EPS

EPS(%NetIncome%,%Shares%)

Caclulates Earnings Per Share (EPS).

PER

PER(%PriceCommonShare%,%EPS%)

Calculates Price Earnings Ratio (PER)

bvps

BVPS(%TOTALSTOCKHOLDEREQUITY%,%PREFERREDSTOCK%,%SHARES%)

Calculates Book Value Per Share (BVPS).

MBR

MBR(%PriceCommonShare%,%BVPS%)

Calculates Market to Book Ratio (MBR)

DY

DY(%AnnualDividendPerCommonShare%,%PriceCommonShare%)

Calculates Dividend Yield (DY).

DP

DP(%AnnualDividendPerCommonShare%,%EPS%)

Calculates Dividend Payout (DP).

Using user-defined functions

User-defined functions are MDX functions that users of SQL Analysis Services create and register with the
system. You can use the user-defined functions provided with BPC , or you can define your own.

User defined functions supplied by BPC include:

• MON — month

• PRO — property value

• MOVEMENT — month to month movement

• MOVEMENT2 — month to month movement on two accounts

• FIRSTPREV — opening balance, first month

• FXDIFFNetIncome — difference between balance sheet profit and profit/loss profit

• FUNCALLOC — allocate the full value of an account

• ENTITYALLOC — allocates value of account/entity based on ratio of account over total
account

• OPENBALANCE — current period account balance

• PREVBALANCE — previous period account balance

• DynamicOpenBalance — previous period or previous year account balance

Building user-defined functions

In the context of the rules module, a user-defined function acts as a placeholder. Using the user-defined
function syntax (explained below) you can assign a name to your rule formulas. When you want to use the
formula in a rules file you need only to enter the user-defined function name and the rules module uses
the formula it references when it creates the LGX file. Using user-defined functions makes maintenance of
your rules formulas easier because the actual formula only resides in one location, so when you make a

SAP Library: BPC Administration Guide

January 30, 2009 Page 93 of 217

change to a rule formula you only need to do it in one location. It also improves the readability of your
rules files.

The definition for a user-defined function can be inserted anywhere in a rules file or in an included file.

Note: A good practice is to maintain a library of rules functions in a central file then use an INCLUDE
statement to include the library file in your logic files. This way you only have to maintain one file.
BPC comes with a predefined library of rules functions, called LogicFunctions.lgl, where you can
add your own user-defined functions to this file.

Syntax

For single line functions:

*FUNCTION {functionname}({Param1}[,{Param2}…]) = {Function Text}

Parameter Description

Functionname The name of the function, you decide what name to give the function.

Param1, Param2, etc (Optional) These parameters are used to dynamically modify the
corresponding MDX string (the function formula). Parameters can be hard
coded (i.e., *function FXRate(USD)) or variable (i.e. FXRate (%CURR%), that
is, the value of the parameter is determined by the formula syntax itself.

Function Text The function (in MDX syntax)

If you want to spread the formula across multiple lines you must follow this syntax:

*FUNCTION {functionname}({Param1}[,{Param2}…])

{Function text}

{Function text}

*ENDFUNCTION

Using variable parameters

The following example shows how a variable parameter can be used in a user-defined function.

*function FXRate(%CURR%)

(LookupCube("RateCube","([Entity2Dim].[RateEntDefault],[RateDim].["+[Acco
untDim].CurrentMember.Properties("RATETYPE")+"],[InputCurrencyDim].["
+[EntityDim].CurrentMember.Properties("CURR") + "]," +
MemberToStr([CategoryDim].CurrentMember) + "," +MemberToStr(
[TimeDim].CurrentMember) +
")")/LookupCube("RateCube","([Entity2Dim].[RateEntDefault],[RateDim].["+[
AccountDim].CurrentMember.Properties("RATETYPE"+"],[InputCurrencyDim].[%C
URR%]," +MemberToStr([CategoryDim].CurrentMember) + ","
+MemberToStr([TimeDim].CurrentMember) + ")"))

*endfunction

In this formula the variable %CURR% is determined by the Entity type dimension current member's CURR
property value. Using variable parameters makes the formula dynamic in that it determines the variable
value based on instructions found in the formula. In this case the value is determined by the value in the
CURR property of the current entity member.

Referring to a user-defined function

After you define your user-defined functions, you can refer to the name of the function in your rule
formulas. If the definition of the user-defined function is in another file (such as a library file) you must
use an INCLUDE statement to include that file in the LGF file you are working in. The following example

SAP Library: BPC Administration Guide

January 30, 2009 Page 94 of 217

refers to the user-defined function FXRate. The reference to the user-defined function FXRate and the
INCLUDE statement where the user-defined function is stored are highlighted.

For example, if the following function is defined in MdxLib.lgl:

 //calculate CTS(Cost of goods sold To Sales)
*function CTS(%COSTOFGOODS%,%REVENUE%)
iif(%REVENUE%=0,Null,round(%COSTOFGOODS%/(-%REVENUE%),2))
*endfunction

This function can then be used in another rules file, such as FinStdAccount.lgl, as follows:

*include mdxlib.lgl
// Financial Standard Key Performance Indicators (KPI)
#KPI130 = CTS(FSA220,FSA100),SOLVE_ORDER=100

MON

Returns the MONTH member from the Time dimension.

PRO

PRO(%DIMENSIONNAME%,%PROPERTYNAME%)

Returns the value of a property of the current member of a dimension.

MOVEMENT

MOVEMENT(%ACCOUNT%,%TIMEDIM%)

Return the movement on an account from one month to the next month.

MOVEMENT2

MOVEMENT2(%ACC1%,%ACC2%)

Return the movement on two accounts combined from one month to the next month.

FIRSTPREV

FIRSTPREV(%ACCOUNT%)

Return the opening balance, but only in first month of year.

FXDIFFNetIncome

FXDiffNetIncome(%CYNI%,%NETINC%)

Returns the difference between Balance Sheet profit and Profit/Loss profit. This difference occurs because
balance sheet profit is calculated based on the currency exchange rate on a specific days (last day of the
month), but PL profit is calculated on the average currency rate over a month.

If the difference is zero in local currency, then the function returns the FX difference in Report currency.

FUNCALLOC

FUNCALLOC(%PROPERTY%, %PROPVALUE%,%DIMENSION%, %SOURCEACCT%)

Allocate the full value from an account based on a property value of a member in a dimension.

ENTITYALLOC

ENTITYALLOC(%ENTITYSRC%,%ACCOUNTSRC%,%ACCOUNTWHT%,%ENTITYTOP%)

Allocate value of account/entity based on ratio of account over total account with automatic offset (based
on Entity/Function).

OPENBALANCE

OpenBalance(%ACCOUNTSRC%)

Returns the current period account balance.

PREVBALANCE

PrevBalance(%ACCOUNTSRC%)

Returns the previous period account balance.

SAP Library: BPC Administration Guide

January 30, 2009 Page 95 of 217

DynamicOpenBalance

DynamicOpenBalance(%ACCOUNTSRC%)

Previous period or previous year account balance. This function requires a solve_order=5. Any account
derived from this one must use the same or higher solev_order.

This function is only suitable for dimension rule formulas, it does not work if used in advanced rule
formulas.

The BPC SQL library
BPC supplies SQL functions that you can use in your advanced rules formulas, including:

• ROLLTOBS

• ACCUMULATE

• TRANSLATE_LDI

• CALC_MOVEMENT

• CALCULATE_TOTAL_AND_COMMIT

• FX_OVERRIDE

• FX_OVERRIDE_RATE

• FX_OVERRIDE_NOZERO

• TRANSLATE_PROFIT_AND_COMMIT

• CARRYFORWARD_AND_COMMIT

• Derive_Ytd

Building advanced rules

Advanced rules enable you to do calculations that only need to be performed on base-level cells (cells
where all members have no children in any dimension). The results are aggregated up the dimensional
hierarchy intact, without being re-calculated at upper levels.

When to use advanced rules

An example of an advanced rule formula is: units times price calculations. Such calculations cannot be
defined in dimension rules because they must only be performed on base-level cells. You can define units
times price calculations in worksheets where the calculation is applied to values retrieved from the BPC
database but maintaining and controlling the formulas is difficult.

BPC provides a library of MDX and SQL formulas. In addition to the sample formulas, the ApShell
application set is pre-configured with many functions which are included in all application sets you create
from ApShell.

How advanced rules work

BPC rules read a specific data selection from the BPC application, apply to it a set of user-defined
formulas (stored in a rules file), derive the values and writes those values back to the BPC application.
This process allows you to perform such calculations as units times price because the formulas are applied
only to those members specified in the rule file.

The rules module can be run in any of three ways:

• After data is sent to the database - It can be automatically invoked each time data is sent to
the database (EvSND or EvINP) using the default.lgf file. By using this method, the formulas
are executed immediately after the data is sent and the results can be seen in BPC right
away.

• After Journals data sends rules in either default.lgf, or, if present, journal.lgf, is run after
Journal data sends.

• It can also be run from Data Manager for batch processing of formulas. Using Data Manager
to execute rules module formulas is useful for calculations that do not need to be executed
immediately. For example, as an administrator you can decide to wait until all the data has
been entered in the local currency before generating the translated amounts in the reporting
currencies.

To invoke advanced rules, you need the following:

• The name of the advanced rules file to execute

SAP Library: BPC Administration Guide

January 30, 2009 Page 96 of 217

• The data selection against which the formulas must be executed

If the rules module is invoked by a Data Manager package, the package provides this information, usually
from a prompt to the person running the Data Manager package.

If advanced rules has been invoked automatically by BPC, BPC follows these rules:

1. Runs the DEFAULT.lgf advanced rules or, if the Journal module is sending data, the system runs
the journal.lgf avanced rules unless that file does not exist, in which case the system runs
default.lgf.

2. Passes a data selection that is derived by the scope of the data that has just been entered into
the cube.

In order to build the correct data selection, BPC relies on all occurrences of different members in all
dimensions, excluding ACCOUNT, for which it assumes ALL members.

For example, assume that you have entered data for six cells in the application. The corresponding
records could be the following:

CATEGORY TIME ENTITY CURRENCY ACCOUNT PRODUCT PERIODIC

ACTUAL 2004.JAN SALESITALY LC UNITS PRODUCTA1 12345

ACTUAL 2004.JAN SALESITALY LC INPUTPRICE PRODUCTA1 100

ACTUAL 2004.FEB SALESITALY LC UNITS PRODUCTA1 5456

ACTUAL 2004.FEB SALESITALY LC INPUTPRICE PRODUCTA1 200

ACTUAL 2004.FEB SALESITALY LC UNITS PRODUCTA2 300

ACTUAL 2004.FEB SALESITALY LC INPUTPRICE PRODUCTA2 8456

In this case, a send (for example, EvSND) passes a selection containing the category ACTUAL, the time
periods 2004.JAN and 2004.FEB and the entity SALESITALY.

With the information specifying the scope of the data to process and the formulas found in the default
logic, the rules module builds an MDX query that returns the appropriate set of calculated cells.

About advanced rule files

The rules module relies on Advanced logic files which contain the formulas that are to be applied to the
specified calculated members (data selection). The rules module does not perform the calculations
directly, but uses MDX or SQL queries that it passes to the Analysis Server to get from it the desired
results. The formulas that it uses must be consequently written in the correct syntax.

The Advanced rules files are LGF (ASCII) files and contain the code for the formulas.

The compiled logic file

When the advanced formulas text file is saved it is actually converted into another file (with the extension
LGX) that is an executable version of the LGF file.

The library file

Library files store a library of standard functions. (Currency translation and inter-company eliminations,
for example.) A library file has the extension LGL.

You can use the #INCLUDE function in your LGF file to call the library file at validation. The rules module
scans the library file for the appropriate formulas to use based on the information in the LGF file.

SAP Library: BPC Administration Guide

January 30, 2009 Page 97 of 217

The dimension constants file

This is a rules file but it behaves a little differently. It maps your dimension names for the application to
the standard BPC dynamic logic. By updating the dimension constants file with your dimensions, you avoid
having to change or rewrite any of the standard functions that are included with BPC. The dimension
constants file is located in:

<BPC>\Webfolders\<AppSet>\SystemLibrary\System_Constants.LGT

// application constants
//--
*FUNCTION CATEGORYDIM =%CATEGORY_DIM%
*FUNCTION TIMEDIM =%TIME_DIM%
*FUNCTION CURRENCYDIM =%CURRENCY_DIM%
*FUNCTION ENTITYDIM =%ENTITY_DIM%
*FUNCTION ACCOUNTDIM =%ACCOUNT_DIM%
*FUNCTION INTCODIM =%INTERCOMPANY_DIM%
// This part is needed when a RATE application
// is associated to the application
// (FX = single or multi currency)
//--
*FUNCTION RATEAPP =%RATE_APP%
*FUNCTION RATEENTITYDIM =%RATEENTITY_DIM%
*FUNCTION RATEACCOUNTDIM =%RATEACCOUNT_DIM%
*FUNCTION INPUTCURRENCYDIM =%RATECURRENCY_DIM%
*FUNCTION RATEENTITYMBR =%RATEENTITY_DEFAULTMBR%
*FUNCTION RATESRCCALCMBR =RATECALC

where <BPC> is the drive where the BPC software is located and <AppSet> is the name of the application
set.

For example, if your category type dimension is named "MYCATEGORY", you would change:

*FUNCTION CATEGORYDIM =%CATEGORY_DIM%

to:

*FUNCTION MYCATEGORYDIM =%CATEGORY_DIM%

You can also include application constants and member constants in the dimension constants file. For
example, you would do this if your advanced formulas reference another application where values to be
used in the formula were stored.

Running rules after data sends

In this case the Logic module determines the data selection (the selection of members upon which the
rules module performs calculations) based on all occurrences of the Category, Time and Entity dimension
that are found in the posted data.

All rules in default.xls (default.lgl) are run after data sends.

Running rules after Journal updates

If you are using the Journals feature, you can have special advanced logic for Journals, or Journals can
run default advanced logic. Default advance rules are the same as the default advance rules run during
BPC for Excel data sends.

To use special advanced rules for Journals, create an advanced logic worksheet named Journal.xls and
save it and validate it. This creates Journal.lgf and Journal.lgx. After this file is created, every time users
post data using a Journal the special journal advanced rules are run. If there is no Journal.lgf file, the
system runs the standard default advanced formula (default.lgf) after Journal postings.

Performing intercompany eliminations

The elimination of the intercompany values is based on the hierarchical relationships defined in the entity
dimension. This type of relationship can be evaluated using MDX-based rules, because the MDX language
understands hierarchies. But there is a special SQL-based function that allows the system to evaluate

SAP Library: BPC Administration Guide

January 30, 2009 Page 98 of 217

hierarchies and understand parent-child relationships in a tree, to enable the elimination of intercompany
values.

Syntax

This function is named CPE (Common Parent Elimination) and supports the following syntax:

CPE({Entity1} , {Entity2} [, {Organization} [, {ElimProperty} [,
{ElimDim}]]])

This function returns the name of the "Elimination entity" immediately below the first "common parent" of
{Entity1} and {Entity2}, as found in the specified {Organization}. The "Elimination entity" is an
immediate dependant of the common parent having the property {ElimProperty} set to "Y".

Parameter Description

Entity1 and
Entity2

This parameters Entity1 and Entity2 are required and can be:

• A specific name enclosed in double quotes (like "Italy")

• A dimension name (like ENTITY, meaning the current member of the
ENTITY dimension)

• A dimension name and property combination (like INTCO.ENTITYPROP,
meaning the value of the ENTITYPROP property of the current member
of the INTCO dimension)

For example, the following returns the name of the elimination entity below EUROPE,
for example E_EUROPE.

• CPE("ITALY" , "FRANCE")

The following returns the name of the elimination entity below WORLD, for example
E_WORLD.

• CPE("ITALY" , "US")

Organization This parameter is optional, and must be in the format Hn where n is the organization
number (for example H1 or H2, etc., to indicate PARENTH1 or PARENTH2, etc.). If
omitted, the value H1 is assumed.

ElimProperty This parameter is optional, and can be used to indicate the name of the entity
property that defines the "elimination" entities (i.e., the entities where the amounts
should be eliminated). If omitted, the value ELIM is assumed.

ElimDim This parameter can be used in case the dimension for which the elimination must be
performed is NOT a dimension of type ENTITY. In the following example the user is
defining the elimination between Business Units in the BU dimension (here the Inter-
CO dimension is an inter-BU dimension).

*WHEN CPE(I_BU.BU,BU,H1,ELIM,BU) // note the
additional parameter

*IS <>""

 *REC(BU=%CPE%,FACTOR=-1)

 *REC(BU=%CPE%,ACCOUNT=ACCOUNT.ELIMACC)

*ENDWHEN

Examples

The CPE() function is only valid in a *WHEN statement. The subsequent *IS statement should verify that
a valid elimination entity has been returned. (*IS <> “”). The returned elimination entity can then be

SAP Library: BPC Administration Guide

January 30, 2009 Page 99 of 217

referenced in a subsequent *REC statements using the keyword %CPE%. The following example shows a
correct use of the function:

*WHEN CPE(ENTITY,INTCO.ENTITY)

*IS <>""

*REC(ENTITY = %CPE%, FACTOR = -1) // eliminate the original account...

*REC(ENTITY = %CPE%, ACCOUNT = ”PLUG”) //...into the account plug

*ENDWHEN

Note: Note how the name of Entity1 is derived from the current ENTITY member and the name of
Entity2 is derived from the ENTITY property of the current INTCO member.

accumulate

ACCUMULATE(%src_flowacc%, %dst_bsacc%)

Accumulate periodic values from a flow account into a bs (balance statement) account. This is a complete
commit section.

Parameters:

%src_flowacc% The flow account that contains the periodic values that need to be accumulated.

%dst_bsacc% The destination balance sheet account into which the values are accumulated.

CALCULATE_TOTAL_AND_COMMIT

CALCULATE_TOTAL_AND_COMMIT(%add_property%)

This formula can be used to store the total of a set of accounts defined by a common property.

Parameters:

%add_property% The name of the property defining the accounts to add

To use this formula, add a property to the account dimension and enter "Y" or "A" (for "Add") in all
accounts that should be added to the total, enter "S" in all accounts that should be subtracted from the
total, Enter "T" in all accounts where the total should be stored.

Enter a line in the logic invoking this formula with the appropriate property name, as in the following
example:

CALCULATE_TOTAL_AND_COMMIT(ADD1)

CALC_MOVEMENT

CALC_MOVEMENT(%Acc%,%MovAcc%)

Calculates the net change between periods. The time periods are defined by the Current and Prior
properties in the Time dimension.

Parameters:

%Acc% The account for which you want to calculate the net change.

%MovAcc% The account in which to place the results.

CARRYFORWARD_AND_COMMIT

CARRYFORWARD_AND_COMMIT()

This formula performs a carry-forward of last year closing value into current period.
CARRYFORWARD_AND_COMMIT requires the property OPE in the Account dimension (ID of the opening
account). This formula must be executed from a DTS package in LGF format (prompting for category and
time). For this reason it is not suitable to be used in a default formula sheet.

To use this formula, add a property called OPE to the account dimension, and enter the ID of the accounts
where the opening value should be stored into the appropriate accounts.

Define a logic containing the line:

CARRYFORWARD_AND_COMMIT()

Then run this logic from a DTS package that calls it using explicitly the extension LGF.

SAP Library: BPC Administration Guide

January 30, 2009 Page 100 of 217

Derive_Ytd

DERIVE_YTD(%ytd_acc%,%flow_acc%)

This is the only formula in the library that generates an MDX logic query and, as such, must be used on its
own or as part of an MDX logic section.

This formula can be used to read a YTD amount from a PERIODIC appset, and store it in another account.
Typically, it can create the net profit in balance sheet from the net profit in profit and loss.

Parameters:

%ytd_acc% The account to write in YTD view (LEQ)

%flow_acc% The account to read in YTD view (INC)

Define a rule invoking this sub, as in the following example:

DERIVE_YTD(CYNI, NetIncome)

FX_OVERRIDE

FX_OVERRIDE(%from_ovr_acc%,
 %to_ovr_acc%,
 %fx_diff_acc%,
 %CURR%)

This formula can be used to override the default translation of a given account. The difference from the
default translation value is posted into a translation difference account.

Parameters:

%from_ovr_acc% The account from which to read the overriding amount

%to_ovr_acc% The account to override

%fx_diff_acc% The account used to post the difference from default

%CURR% The reporting currency of the overriding amount

General remarks:

• This formula does not require a lookup.

• It can be invoked multiple times before a commit.

• It MUST be executed AFTER the default translation.

• The section MUST NOT contain any clear_destination instruction.

To use this formula, enter one or more lines in the logic that call this formula with the appropriate
parameter values, as in the following example:

FX_OVERRIDE(OVR_ACC1_USD, ACC1, FXDIF_ACC1_USD, USD)

FX_OVERRIDE(OVR_ACC2_USD, ACC2, FXDIF_ACC2_USD, USD)

*COMMIT

FX_OVERRIDE_RATE

FX_OVERRIDE_RATE(%ovr_rate_acc%,
 %ovr_acc%,
 %fx_diff_acc%,
 %CURR%)

This formula is similar to FX_OVERRIDE, but the first parameter is the name of an account where the
translation rate is entered in place of the translated amount. See FX_OVERRIDE.

Parameters:

% ovr_rate_acc% The account from which to read the overriding rate

%to_ovr_acc% The account to override

%fx_diff_acc% The account used to post the difference from default

SAP Library: BPC Administration Guide

January 30, 2009 Page 101 of 217

%CURR% The reporting currency of the overriding rate

General remarks:

• This formula does not require a lookup.

• It can be invoked multiple times before a commit.

• It MUST be executed AFTER the default translation.

• The section MUST NOT contain any clear_destination instruction.

To use this formula, enter one or more lines in the logic that call this formula with the appropriate
parameter values, as in the following example:

FX_OVERRIDE_RATE(OVR_ACC3_USD_RATE, ACC3, FXDIF_ACC3_USD, USD)

FX_OVERRIDE_RATE(OVR_ACC4_USD_RATE, ACC4, FXDIF_ACC4_USD, USD)

*COMMIT

FX_OVERRIDE_NOZERO

FX_OVERRIDE_NOZERO(%from_ovr_acc%,
 %to_ovr_acc%,
 %fx_diff_acc%,
 %CURR%)

This formula is equivalent to the FX_OVERRIDE formula, and it takes the exact same parameters.
However, when using this formula, the override mechanism only takes place if an overriding amount is
entered. If not (or if set to zero), the default translation prevails.

Parameters:

%from_ovr_acc% The account from which to read the optional overriding amount

%to_ovr_acc% The account to override

%fx_diff_acc% The account useed to post the difference from default

%CURR% The reporting currency of the overriding amount

General remarks:

• This formula does not require a lookup.

• It can be invoked multiple times before a commit.

• It MUST be executed AFTER the default translation.

• The section MUST NOT contain any CLEAR_DESTINATION instruction.

Enter one or more lines in the logic invoking this sub with the appropriate parameters values like in the
following example:

FX_OVERRIDE_NOZERO(OVR_ACC1_USD, ACC1, FXDIF_ACC1_USD, USD)

FX_OVERRIDE_NOZERO(OVR_ACC2_USD, ACC2, FXDIF_ACC2_USD, USD)

*COMMIT

ROLLTOBS

SUB ROLLTOBS(%bsaccount%,
 %workaccount%,
 %acctproperty%,
 %propertyvalue%,
 %LastPeriod%)

Rolls a periodic PL account to a BS account. Requires a property to identify the PL accounts to be totaled
and requires a temporary work account to calculate the total of the PL account.

Parameters:

%bsaccount% Balance statement account name.

%workaccount% Temporary working account name.

%acctproperty% Property that identifies the PL accounts to be totaled.

SAP Library: BPC Administration Guide

January 30, 2009 Page 102 of 217

%propertyvalue% The value of the property to total.

%LastPeriod% Identifies the last time period in which to roll to the balance sheet.

TRANSLATE_LDI

TRANSLATE_LDI(%bs_acc%,%bs_acc_fxdiff%,%avg_rate%,%end_rate%)

This function translates a balance based on the current value and compares it against the prior balance.
The current translated rate is applied to the difference from the current and prior values. For example:

January balance: 100
exchange rate: .5

February balance: 200
exchange rate: .75

The final balance is: (100*.5) +(100*.75) = 125, given that the difference between the two time periods
is 100.

The local difference in the bs_acc account is translated at the avg_rate and added to the prior period
translated value with the translation difference posted to the bs_acc_fxdiff account. This function has a
complete commit section. Requires the properties PRIOR and CURRENT in the Time dimension.

Parameters:

%bs_acc% Balance statement account.

%bs_acc_fxdiff% Balance statement account to which the local differences are posted.

%avg_rate% The ID of the average rate (normally AVG).

%end_rate% The ID of the end of period rate (normally END).

TRANSLATE_LDI(CYNI, FXCYNI, AVG, END)

TRANSLATE_PROFIT_AND_COMMIT

TRANSLATE_PROFIT_AND_COMMIT(%bs_profit_acc%,
 %bs_profit_acc_fxdiff%,
 %avg_rate%,
 %end_rate%)

The balance statement (BS) account is translated at AVG rate and the difference from END rate is posted
into FXDIFF account. This function defines a complete commit section.

Rules keyword reference
The reference contains descriptions of all the rule statements you can use. You can also use the Rules
Assistant to help create rules statements.

*ADD_DIM - more information

Allowed uses: By Commit, MDX, SQL

*ADD_DIM {dimension name}={value}[,{dimension name}={value},…]

Works in conjunction with the *DESTINATION_APP instruction to post results of rules calculations to a
different application. See the *DESTINATION_APP topic for more information.

*ADD / *ENDADD - more information

Allowed uses: By Commit, MDX

*ADD {variable} = {set}
{formula}
*ENDADD

This structure allows you to automatically add a set of members as specified in a comma-delimited range
to a set of calculated members. The range can be dynamically derived using a *SELECT() instruction.

Note: ADD/ENDADD loops executed on empty lists of elements do not cause the logic execution to fail.

Example 1:

SAP Library: BPC Administration Guide

January 30, 2009 Page 103 of 217

*ADD %ACC%=A,B,C,D
#MYSUM = %ACC%
*ENDADD

This expands into:

#MYSUM = A+B+C+D

Example 2:

The expression to the right of the equals (=) sign can be a more complex expression as in the following
example:

#MYSUM = (-[ACCOUNT].[%ACC%])

Note that the above format enables you to SUBTRACT the set of members from the calculated one.

Example 3:

Another possibility is to include a fixed part in the sum as follows:

 #MYSUM = [ACCOUNT].[FIXED]+ [%ACC%]

The program uses the rightmost plus (+) sign as delimiter between the fixed portion and the portion to
add. The above example expands as follows:

#MYSUM=[ACCOUNT].[FIXED]+ [A]+ [B]+ [C]+ [D]

Example 4:

The structure supports multiple formulas to be expanded simultaneously, for example:

*ADD %ACC%=A,B,C,D

#MYFIRSTSUM = %ACC%

#MYSECONDSUM = %ACC%

*ENDADD

*BEGIN / *END - more information

Allowed uses: By Commit, MDX

*BEGIN {multiple lines} *END

You can write MDX formulas that span multiple lines by enclosing the formulas between the two keywords
*BEGIN and *END.

Example:

*BEGIN

[ACCOUNT].[#GROSSSALES] =

-[ACCOUNT].[UNITS]*

[ACCOUNT].[INPUTPRICE]

*END

Writing MDX formulas this way increases readability of your logic code.

*CALC_ORG - more information

Allowed uses: By Commit/Global, MDX, SQL

A special instruction can be inserted between WHEN / ENDWHEN structures, to calculate the parent
members of a selected hierarchy. Its syntax and behavior are exactly the same as the STORE_ORG
instruction. The main difference from STORE_ORG is that CALC_ORG does not require that it is written
between COMMIT instructions, and does not enforce a posting of the data to the database, until a
subsequent COMMIT is found.

Its syntax is:

*CALC_ORG {DimensionName} = {OrgProperty}

Example:

SAP Library: BPC Administration Guide

January 30, 2009 Page 104 of 217

*WHEN…

// some calculation...

*ENDWHEN

*CALC_ORG ACCOUNT = PARENTH1

In the above example the results of the preceding calculations are included in the calculation of the
parents of PARENTH1 org.

The CALC_ORG instruction automatically enforces a double GO instruction (before and after its execution).
For this reason, no other instruction needs to be inserted between it and the preceding WHEN / ENDWHEN
structures, nor the following ones.

Calculating orgs in memory

If the calculated members generated by a CALC_ORG instruction do not need to be posted to the
database, you can use a variation of the CALC_ORG instruction that does not add these extra records to
the database, even when the COMMIT instruction is reached.

The instruction is:

*CALC_DUMMY_ORG {DimensionName} = {OrgProperty}

A valid alternative syntax is:

*CALC_ORG {DimensionName} = {OrgProperty}, DUMMY

This instruction =automatically adds a pound sign ("#") in front of the generated member Ids. As a result
these records are considered memory variables that are not posted to the database.

The dummy members generated with this technique do not exist in any dimension, even if generated from
real members. Because of this, it is not possible to use in the logic any property assigned to them. They
can only be referenced using their ID.

CALC_ORG and CALC_DUMMY_ORG Multi-line syntax

The instructions CALC_ORG and CALC_DUMMY_ORG now support a multi-line syntax that gives you better
control of the scope of the calculation. Though the original single-line syntax is still supported, the
following new syntax can also be used:

*CALC_DUMMY_ORG

*ORG {dimension}={property}

 [*WHERE {dimension} = {member set}]

 [*WHERE {dimension} = {member set}]

…

*ENDCALC

For example:

*CALC_DUMMY_ORG

*ORG ENTITY=PARENTH1

 *WHERE ACCOUNT = CASH, ACCREC

*WHERE INTCO = NON_INTERCO

*ENDCALC

In the above example the calculation of the hierarchy PARENTH1 for the ENTITY dimension will only be
performed for accounts CASH and ACCREC and for the intercompany member NON_INTERCO, even if all
accounts or intercompany members are in memory.

This feature can be extremely helpful in controlling the number of records that will be created by the
CALC_ORG or CALC_DUMMY_ORG instructions, in all cases where only a few elements are actually needed
for some dimension.

SAP Library: BPC Administration Guide

January 30, 2009 Page 105 of 217

Notes:

• The instruction still works only on the records that have been pulled in memory by the rules
query, as defined by the XDIM_MEMBERSET or similar instructions. The WHERE clause in the
CALC_ORG or CALC_DUMMY_ORG will NOT modify the region accessed by the query, but will
only apply an additional filter to the region.

• The WHERE clause only supports the EQUAL (“=”) sign. Other operands like “<>” are not
currently supported.

• In addition, the member set at the right of the equal sign in the WHERE clause must be
EXPLICIT. Other syntaxes (like WHERE ACCOUNT = ACCOUNT.GROUP=”Assets” or similar)
are currently not supported.

Using *XDIM_NOSCAN and *NOSCAN instructions

The instructions *XDIM_NOSCAN and *NOSCAN in *CALC_DUMMY_ORG allows you to load in memory
information that is only needed in a *GET() statement and never used in a *IS statement. For example,
in a Units * Price calculation the logic might read as follows:

*XDIM_MEMBERSET ACCOUNT=UNITS, PRICE

*WHEN ACCOUNT

*IS UNITS

*REC(FACTOR=GET(ACCOUNT=”PRICE”),ACCOUNT=”REVENUE”)

*ENDWHEN

In such situations, you can now instruct the logic to ignore the PRICE by simply saying:

*XDIM_MEMBERSET ACCOUNT=UNITS, PRICE

*XDIM_NOSCAN ACCOUNT=PRICE

*WHEN *

*IS *

*REC(FACTOR=GET(ACCOUNT=”PRICE”),ACCOUNT=”REVENUE”)

*ENDWHEN

This makes the scanning of the record set loaded in memory somewhat faster, as all those with account
PRICE will be skipped very efficiently.

Similarly, a *NOSCAN instruction can be added to a *CALC_DUMMY_ORG structure as follows.

*CALC_DUMMY_ORG

*ORG= {dimension name}

*NOSCAN

*ENDCALC

This enables the scanning of the record set loaded in memory somewhat faster, as all parent members will
be skipped very efficiently in any subsequent WHEN evaluation.

*CALC_EACH_PERIOD - more information

Allowed uses: By Commit/Global, MDX, SQL

The instruction CALC_EACH_PERIOD can be inserted within a commit section, to enforce an orderly
calculation of the members of the time dimension. When this instruction is present, the source records are
scanned one period at a time, in ascending order from the oldest to the youngest, and the results
generated by each time period are merged with the rest of the record set, before the next period is
calculated.

With this technique we can more easily and efficiently handle the typical calculations of financial reporting
applications, where the results of one period are the inputs for the calculation of the next period.

SAP Library: BPC Administration Guide

January 30, 2009 Page 106 of 217

Example:

//--

*CALC_EACH_PERIOD

*WHEN ACCOUNT

*IS OPEN_BALANCE, MOVEMENTS

*REC(ACCOUNT=CLOSING_BALANCE)

*REC(ACCOUNT=OPEN_BALANCE,TIME=NEXT)

*ENDWHEN

 //--

The above sample rule performs a carry-forward of the closing balance of each period into the opening
balance of next period.

*CALCULATE_DIFFERENCE - more information

Allowed uses: By Commit, MDX, SQL

*CALCULATE_DIFFERENCE = 0 | 1

The database always stores the difference between the new value and the old value. This option defines
where the calculation is performed. By default (when *CALCULATE_DIFFERENCE = 1), the logic
automatically calculates the difference and sends only that value to the posting engine ("BPC "),
instructing it that what it's receiving is already the difference, and no other action is required. Since the
calculation of the difference takes time, if the calculation is performed directly by the Logic module at the
time of executing the rules, the subsequent posting time may be reduced.

If you set the calculate_difference value to zero (0), the logic does not perform the calculation, and sends
to the posting engine the desired final value. In this case, it tells the posting engine that the difference is
still to be calculated, and the posting engine will take over the job. The main reason for using this
instruction is so the debug file shows the values exactly as you expect them to look in the application.

*CLEAR_DESTINATION - more information

Allowed uses: By Commit, SQL

*CLEAR_DESTINATION

*DESTINATION {DimensionName1}={MemberSet1}

*DESTINATION {DimensionName2}={MemberSet2}

Clears all records in the destination region, defined by one or more *DESTINATION instructions.

In most cases there is no need to perform a clear of the destination area when re-executing a modeling
logic that uses SQL queries. SQL logics, in fact, base their computation on the existence of records in the
fact table, regardless of the value assigned to these records. Since values that have been re-set to zero
maintain records in the fact table, the execution of the SQL logic ensures the correct handling of any
value, including those that have been set to zero.

This may not be true in all cases. For example, if a value is set to zero and, before the SQL rules are
executed, an administrator performs a compression of the fact table, the zeroed-out records are lost. This
could lead to a situation where the rule does not clear the records it generated in a prior pass, until you
re-enter some value in the values that were set to zero. This situation is unlikely to happen when the rule
is a default rule (which is executed at the same time data is entered), but it could happen with rules that
are executed in a batch mode (like eliminations, allocations or consolidations).

To control these situations, the administrator can make use of a couple of instructions that enforces a
clear of all records existing in the destination region at the time the logic is executed.

Note: These instructions may lead to deletion of the input data, if used incorrectly. A good
understanding of their behavior is required, in order to avoid the risk of serious losses of data in
the database.

The instructions to use are:

*CLEAR_DESTINATION

SAP Library: BPC Administration Guide

January 30, 2009 Page 107 of 217

*DESTINATION {DimensionName1}={MemberSet1}

*DESTINATION {DimensionName2}={MemberSet2}

…

The instruction CLEAR_DESTINATION activates the clear mechanism. If not present, the rules do not try to
perform any clear.

The second instruction, the DESTINATION instruction, is optional. However, when CLEAR_DESTINATION is
used, the DESTINATION instruction MUST be used for ALL the dimensions for which you want to be SURE
that the correct region is cleared. If not used, the program tries to automatically decide what to clear in
each dimension, and this, in some cases, might be incorrect. Following is an explanation that clarifies what
could happen:

Case 1: The source and destination regions are the same.

For example, the category is ACTUAL for both the source and the destination regions. The category the
program clears is definitely ACTUAL. For this dimension, there is no need to specify anything.

Case 2: The source and destination regions are different, as specified by a XDIM_MEMBER instruction.

Example: *XDIM_MEMBER DATASRC=LC TO ELIM

In this case the logic knows that the destination Datasrc member can only be ELIM. The Datasrc the
program clears is definitely ELIM. In this case too, there is no need to specify anything.

Case 3: The source and destination members are different, as defined by one or more *REC()
instructions.

This is the case where the rules might have an issue in deciding what to clear. The REC() instruction, in
fact, has a great deal of power in deciding where to write its output, and could do it on multiple
dimensions at the same time. It could say something like:

*REC(CURRENCY=”EURO”)

*REC(ACCOUNT=ACCOUNT.PLUGACCOUNT)

*REC(ENTITY=”IC_%ENTITY%”,CURRENCY=ENTITY.CURR)

As a result, for all the dimensions where the destination region is defined by one or more *REC
instructions, it is MANDATORY for you to explicitly restrict the region that are to be cleared.

For example, if a translation rule looks like this:

*WHEN ACCOUNT.RATETYPE

*IS "AVG","END"

*REC(FACTOR=LOOKUP(EURO)/LOOKUP(SOURCECURR),CURRENCY="EURO")

*ELSE

*REC(CURRENCY="EURO")

*ENDWHEN

The instructions to use are:

*CLEAR_DESTINATION

*DESTINATION CURRENCY=EURO

If the DESTINATION for the currency dimension is not specified, the destination region for the currency is:

 LC,EURO

which would result in the loss of all input data.

The members specified in the DESTINATION region can be a list of comma-delimited members (example:
*DESTINATION CURRENCY=EURO,USD) or a member set defined with an MDX expression, for example:

*DESTINATION
CURRENCY=filter([CURRENCY].members,[CURRENCY].properties("REPORTING"="Y")

SAP Library: BPC Administration Guide

January 30, 2009 Page 108 of 217

A destination region is created by the rules even when no CLEAR_DESTINATION instruction is used. This is
done when the CALCULATE_DIFFERENCE option is active, to calculate the difference between the newly
calculated values and the values existing in the database. In this situation, having a destination region
that could be broader than needed cannot do any harm, and you do not need to worry. However, the
instruction DESTINATION could still be used, even if no clear_destination instruction is used, simply to
optimize the size of the destination region to query, with some benefit to the performance and memory
footprint of the logic execution.

The instruction *DESTINATION also supports the "not equal to" operator with the syntax:

*DESTINATION<>{MemberSet}

This operator can be handy to pass to the SQL query smaller lists of valid members, which is more
efficiently parsed by the Microsoft SQL engine.

*COMMIT_EACH_LEVEL - more information

Allowed uses: By Commit, MDX, SQL

*COMMIT_EACH_LEVEL={dimname}

This instruction sorts and group members of the selected dimension and enforces a rules execution from
the bottom to the top of the structure, with a commit between each level. This feature can be used to
ensure that the eliminations performed on each level take into account the results of the eliminations
performed on all lower levels.

*COMMIT_EACH_MEMBER - more information

Allowed uses: By Commit, MDX, SQL

*COMMIT_EACH_MEMBER={dimname}

This instruction enforces a commit for each member of the selected dimension. If the dimension is of type
TIME, the members are also sorted in ascending sequence, so that older periods are processed first. In
addition, the rule is executed for all periods between the oldest and the youngest, filling any gaps existing
in the range of selected periods. This can be useful for formulas performing a carry-forward of prior
periods values as in this example.

#ClosingBalance= (ClosingBalance, lag([TIME].currentmember,1)) + Changes

Note: The lag() function is an MDX function. Please see your Microsoft MDX reference for more
information.

*COMMIT_MAX_MEMBERS - more information

Allowed uses: By Commit, MDX

*COMMIT_MAXMEMBERS

Allows you to modify the behavior of the XDIM_MAXMEMBERS option so that commits are performed after
each individual query rather than all at once at the end of the loop of queries.

When the instruction XDIM_MAXMEMBERS is used in MDX-type rules, the rules query is broken is as many
queries as required to accommodate all members to process. However, all resulting records are committed
to the database in one lump at the end of the loop of queries, and not after each query. There may be
cases where this is not desired (for example for memory limitations), and it may be preferable to perform
a commit to the database after each individual query.

You must insert this instruction inside an *XDIM_MAXMEMBERS instruction.

*COMMIT - more information

Allowed uses: By Commit, MDX, SQL

*COMMIT

By default, the rules engine performs calculation on values in memory. You use the *COMMIT instruction
to post those values to the database. Using the *COMMIT instruction defines a "COMMIT section." Certain
instructions can be used only once per COMMIT section rather than globally.

It may happen that a logic file contains formulas that depend on the result of calculations performed by
the application, and that these calculations in turn depend on the results of some other formulas in the
same rules.

SAP Library: BPC Administration Guide

January 30, 2009 Page 109 of 217

Take this example:

[Account].[#1] = {expression}

[Account].[#2] = ([ENTITY].currentmember.parent,[Account].[#1])

In this example account 2 depends on the calculation of the parent entity values performed by the
application, and this calculation in turn depends on the calculation of account 1.

This logic, if written in the above format, does not work correctly, because account 1 cannot be retrieved
from the parent of the current entity until its result has been posted to the application. To get the right
results, account 1 must be calculated AND stored in the application. THEN, the 'calculated' result can be
retrieved from the parent and be used to calculate account 2.

In order to force a write back of the result of the calculation of account 1 into the application, the
instruction "*COMMIT" can be inserted between the two calculations, to enforce a write back of account 1
before the calculation of account 2. The logic works if written as follows:

[Account].[#1] = {expression}

*COMMIT

[Account].[#2] = ([ENTITY].currentmember.parent,[Account].[1]

Note that in this case account 1 in the second formula does not have the pound sign (#), because it is a
'stored' amount read from the application.

Note: Any number of commit instructions can be entered in a rules file. However, the number of commit
instructions should be kept to a minimum, because they have a negative impact on the overall
performance of the rules execution.

*DESTINATION - more information

Allowed uses: By Commit, SQL

*DESTINATION {DimensionName}={MemberSet}

This instruction is used in conjunction with *CLEAR_DESTINATION. Please see the *CLEAR_DESTINATION
rules for more information.

*DESTINATION_APP - more information

Allowed uses: By Commit, MDX, SQL

*DESTINATION_APP = {app name}

*SKIP_DIM= {dimension name}[,{dimension name},…]

*ADD_DIM {dimension name}={value}[,{dimension name}={value},…]

*RENAME_DIM {dimension name}={value}[,{dimension name}={value},…]

Allows you to write the results of calculations to a different application. Dimensions can be added,
removed, or renamed in order to conform with the destination application.

For example, when some data is entered into a divisional application, some of the data may need to also
be posted into a central application that consolidates the results of different divisional applications.

Example:

*DESTINATION_APP = CentralApplication

Often, the destination application shares only some of the dimensions of the original application. In this
case the missing dimensions can be dropped from the original records with the instruction:

*SKIP_DIM= {dimension name}[,{dimension name},…]

Multiple dimension names can be supplied to the instruction separated by commas, or multiple SKIP_DIM
instructions can be entered in separate lines.

If the destination application has dimensions that do not exist in the original application, these can be
added to the passed records, using the instruction:

SAP Library: BPC Administration Guide

January 30, 2009 Page 110 of 217

*ADD_DIM {dimension name}={value}[,{dimension name}={value},…]

Multiple dimension names and values can be supplied to the instruction separated by commas, or multiple
ADD_DIM instructions can be entered on separate lines.

In addition to the instructions ADD_DIM and SKIP_DIM, the keyword RENAME_DIM can be used, to
change name of one or more dimensions. The syntax is:

*RENAME_DIM {dimension name}={value}[,{dimension name}={value},…]

This instruction can be used when data is to be written into an application where a dimension is named
with a different ID.

Multiple dimension names and values can be supplied to the instruction separated by commas, or multiple
RENAME_DIM instructions can be entered on separate lines.

Example:

*RENAME_DIM ACCOUNT_FLASH= ACCOUNT_MAIN

Here is a more complete example:

*DESTINATION_APP = CentralApplication

*SKIP_DIM= PRODUCT,MARKET

*ADD_DIM DATASRC=INPUT

*ADD_DIM CURRENCY=LC

*RENAME_DIM ACCOUNTPM=ACCOUNTMAIN

In this example some calculated values are transferred into a central application that is not detailed by
product and market, but contains two extra dimensions (datasrc and currency). For these two dimensions
the members input and lc are used. Also, the chart of account is defined in dimension accountmain.

*FIRST_PERIOD more information

Allowed uses: By Commit, MDX, SQL

*FIRST_PERIOD

This instruction comes as an integration of the *PRIOR instruction and can be used whenever the switch
between the current category and prior category should not happen at year end, but in a different, user-
defined period.

The syntax is:

*FIRST_PERIOD = {period}

For example, say that a rolling forecast is entered in the 12 periods 2005.APR through 2006.MAR, but the
preceding values for the months of 2005.JAN through 2005.MAR should be read from a different category.

This result can be achieved combining the following two instructions:

*PRIOR CATEGORY = “ACTUAL” // quotes are optional

*FIRST_PERIOD = ”APR”

An alternative syntax allows the dynamic retrieval of the name of first period by reading a property of the
current category, like in this example.

*FIRST_PERIOD = CATEGORY.FIRSTPERIOD

The search for the correct date will be performed scanning all periods preceding the first modified period
moving backwards until a time period with the property PERIOD = {period} is met. For example, if
{period} is “MAR” and the first modified date is 2005.FEB, the first date will be 2004.MAR, which is the
first date where PERIOD=”MAR” going backwards from 2005.FEB.

*FLAG_PERIOD more information

Allowed uses: By Commit, MDX, SQL

*FLAG_PERIOD= {period}

SAP Library: BPC Administration Guide

January 30, 2009 Page 111 of 217

..where period must be a valid value of the PERIOD property of the TIME dimension. (For example the
date 2005.MAR would typically have PERIOD=”MAR”).

The value of {period} can also be retrieved from a property with the following alternative syntax:

*FLAG_PERIOD= {dimension }.{property}

For example:

*FLAG_PERIOD = CATEGORY.FLAGPERIOD

This instruction creates a value for the reserved keyword %FLAG_PERIOD%, which can be used as a
replacement string inside the POS() keyword as follows:

*WHEN POS(TIME)

*IS >=POS(%PREFIX%.%FLAG_PERIOD%)

Example:

//---

*FLAG_PERIOD=CATEGORY.FIRSTPERIOD

*WHEN POS(TIME)

*IS >= POS(%PREFIX%.%FLAG_PERIOD%)

*WHEN ACCOUNT

*IS UNITS

*REC(FACTOR=GET(ACCOUNT=”PRICE”), ACCOUNT= “REVENUE”)

*ENDWHEN

*ELSE

*REC // this may be needed if clear_destination is used

*ENDWHEN

//---

Remarks:

Similar to the *PRIOR instruction, the *FLAG_PERIOD instruction will work dynamically only if just ONE
member of the selected dimension (in this example CATEGORY again) is being processed by the logic.

On the other hand, this instruction can also be used in a logic definition where *CALC_EACH_PERIOD is
not required.

*FOR/ *NEXT - more information

Allowed uses: Global, MDX, SQL

*FOR {variable1} = {set1} [AND {variable2={set2}]

{text}

{text}

…

*NEXT

You can use the *FOR / *NEXT structure to define loops over one or more lists of members. In addition,
the rules module supports any number and nesting of FOR/NEXT loops in the body of the rules files.

Single For/Next loop

Say, for example, in the default translation rules you want to repeat a calculation for each reporting
currency. You can write the following logic:

*FOR %CURR%=USD,EURO

//Average Rate for currency %CURR%

SAP Library: BPC Administration Guide

January 30, 2009 Page 112 of 217

[measures].[!Avg_%CURR%] = {expression}

*NEXT

This works the same as the following commands:

//Average Rate for currency USD

[measures].[!Avg_USD] = {expression}

//Average Rate for currency EURO

[measures].[!Avg_EURO] = {expression}

In addition, *FOR/NEXT loops support up to two variables iterating on two independent sets of members:

*FOR %ACC1%=ThisA,ThisB,ThisC AND %ACC2%= ThatA, ThatB, ThatC

 [ACCOUNT].[#%ACC1%] = ([ACCOUNT].[%ACC2%],[TIME].currentmember.lag(1))

*NEXT

The correct number of members is driven by the set of the first variable. If the first variable has less
values than the second variable, the extra values of the second variable is ignored. If the first variable has
more values than the second variable, the missing values of the second variable is assumed to be null.
Note that this is not a nested loop. It is just one loop on two sets of variables.

FOR/NEXT loops executed on empty lists of elements do not cause the logic execution to fail. Instead, it is
skipped without generating an error message.

Nested *FOR / *NEXT loops

The rules module supports any number of nested levels of FOR/NEXT loops in the body of the rules files.
Following is an example of valid syntax:

*WHEN TIME

*IS <>TOT.INP

 *WHEN ACCOUNT

 *IS PERCENT.ALLOC

 *FOR %YEAR%=2003,2004,2005

 *FOR
%MONTH%=JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC

 *REC(FACTOR=GET(ACCOUNT="TOT.OVRHEAD",TIME="TOT.INP")
/100,TIME="%YEAR%.%MONTH%")

 *NEXT

 *NEXT

 *ENDWHEN

*ENDWHEN

Note that, in case of a single-level loop and the set of elements is empty, the rules still validate and
execute correctly. However, in case of nested For/Next loops, none of the loops can contain an empty set
of elements, otherwise the rules do not validate.

Nested loops, similar to single-level loops, can handle up to two sets of “parallel” variables, with the
syntax:

*FOR %VariableOne%=FIRSTSET AND %VariableTwo%=SECONDSET

For example, these are two nested loops both using parallel variables:

*FOR %X%=1,2,3 AND %Y%=A,B,C

 *FOR %M%=4,5 AND %N%=E,F

 //…

SAP Library: BPC Administration Guide

January 30, 2009 Page 113 of 217

 *NEXT

*NEXT

Using a passed set of members at run-time

You can use the passed members of a dimension in a For/Next loop, when the validation is performed at
run time.

*FOR %MYTIME% = %TIME_SET%

// logic content

*NEXT

When the dimension is Time, you can have the passed members ordered in the correct sequence (that is,
from earliest to latest). You can do this by inserting the keyword ORDER_TIME after the *FOR instruction,
as follows:

*FOR ORDER_TIME %MYTIME% = %TIME_SET%

The ordered set of members will also automatically fill the gaps in the time sequence. For example, if the
members to order are 2005.JUN, 2005.FEB, the ordered set will be:

2005.FEB, 2005.MAR, 2005.APR, 2005.MAY, 2005.JUN

Note: The set of items of the FOR loop must represent members of the TIME dimension, otherwise an
error message will be returned.

*FUNCTION / *ENDFUNCTION- more information

Allowed uses: Global, MDX, SQL

This statement has two forms: a single-line format and a multiple-line format:

Single-line format:

*FUNCTION {functionname}({Param1}[,{Param2}…]) = {Function Text}

Multiple-line format:

*FUNCTION {functionname}({Param1}[,{Param2}…])

{Function text}

{Function text}

*ENDFUNCTION

The *FUNCTION statement defines a user-defined function. A function can be inserted into formulas in
place of corresponding MDX statements. This can greatly improve the readability of a logic statement.

The following list contains additional rules about the *FUNCTION statement:

• The definitions of the logic functions can be inserted anywhere in a logic file or in an included
file.

• An unlimited number of functions can be defined.

• An unlimited number of parameters can be passed to a function in order dynamically modify
the corresponding MDX string.

• Functions can be nested (a function can invoke another function), and any level of nesting is
supported.

• The position of the functions in the logic file is irrelevant.

• If multiple instances of the same function are entered in the logic file, the FIRST occurrence
prevails on the subsequent ones. This behavior can be used to redefine a function using the
“add formula” text box in the TDSRunLogic task.

• The values of the passed parameters are replaced in the function text without any validation,
even if they are embedded in longer words, like in this example:

*FUNCTION TEST(Param1,Param2)

AParam1Param2D

*ENDFUNCTION

SAP Library: BPC Administration Guide

January 30, 2009 Page 114 of 217

The following logic line, calling the above function:

[#123]=[TEST(B,C)]

expands into:

[#123]=[ABCD]

For the above reason some caution should be used in defining the names of the parameters, to
avoid the risk of conflicts with MDX reserved words and in general with the text surrounding them
in logic. One good practice could be to always surround the name of the parameters with some
delimiter, like in this example:

*FUNCTION GET_PROPERTY(%DIMNAME% , %PROPERTYNAME%) = ….

• Some characters are invalid in logic functions names. These characters are all those listed
below, plus the blank character:

+ - / * ^ % > < = () [] { } , . ; ' : & \ | # ~ "

Invalid characters are trapped during logic validation.

*GO - more information

Allowed uses: By Commit, SQL

The *GO instruction is used like a *COMMIT statement between *WHEN/*ENDWHEN structures. The *GO
instruction defines the end of a logic section, much like the *COMMIT instruction. Unlike a *COMMIT, data
is not posted to the database. Instead, all generated results are merged with the original set of source
records and the logic restarts from the beginning of the recordset for the next *WHEN/*ENDWHEN
structure.

There is no limit to the number of *GO instructions that can be inserted within a *COMMIT section.
However, since each *GO generates a little bit of overhead, and requires an additional scansion of the
record set, their number should be kept to the minimum.

It might appear that the *GO instruction can be used in place of a *COMMIT instruction, but this is not
quite true. All instructions that are *COMMIT-specific (for example XDIM_MEMBERSET) are still *COMMIT-
specific and not *GO-specific. In other words you cannot redefine the data region to process for each *GO
instruction, but only for each *COMMIT instruction. The *GO instruction only sets a stop-and-go point
between *WHEN/*ENDWHEN structures of the same *COMMIT section, i.e. of the same data region.

Example of why *GO was created

In general, multiple sequential WHEN / ENDWHEN structures are processed in sequence for each record
found in the source region. As a result, the following example might not work correctly:

//--

*WHEN ACCOUNT

*IS UnitsSold

*REC(FACTOR=GET(ACCOUNT=”Price”), ACCOUNT=Sales)

*ENDWHEN

*WHEN ACCOUNT

*IS Sales

*REC(FACTOR=.08, ACCOUNT=SaleTaxes)

*ENDWHEN

//--

The reason this logic does not work is that the value of account Sales held in memory is not the newly
calculated one, but the value found in the database before the new value is calculated. Sales, once
calculated, must be posted to the database with a *COMMIT instruction, and then retrieved for the
subsequent calculation of Sales Taxes, as follows:

//--

*WHEN ACCOUNT

SAP Library: BPC Administration Guide

January 30, 2009 Page 115 of 217

*IS UnitsSold

*REC(FACTOR=GET(ACCOUNT=”Price”), ACCOUNT=Sales)

*ENDWHEN

*COMMIT

*WHEN ACCOUNT

*IS Sales

*REC(FACTOR=.08, ACCOUNT=SaleTaxes)

*ENDWHEN

//--

A better way to write this logic would be to calculate SalesTaxes at the same time Sales are calculated, as
shown here:

//--

*WHEN ACCOUNT

*IS UnitsSold

*REC(FACTOR=GET(ACCOUNT=”Price”), ACCOUNT=Sales)

*REC(FACTOR=GET(ACCOUNT=”Price”) * .08, ACCOUNT=SalesTaxes)

*ENDWHEN

//--

However, there are situations where this is not a practical approach. For these situations, in order to avoid
the inefficiencies of a *COMMIT step, the instruction *GO can be used. Here is how the above logic would
look using *GO:

//--

*WHEN ACCOUNT

*IS UnitsSold

*REC(FACTOR=GET(ACCOUNT=”Price”), ACCOUNT=Sales)

*ENDWHEN

*GO

*WHEN ACCOUNT

*IS Sales

*REC(FACTOR=.08, ACCOUNT=SaleTaxes)

*ENDWHEN

//--

*INCLUDE - more information

Allowed uses: Global, MDX, SQL

*INCLUDE {includedfile}(Param1,Param2,….)

Allows you to include other logic files in the current rules file. If no file name extension is given, .LGF is
assumed. Can be used anywhere inside a rules file.

The benefit of using included files instead of multi-line functions is that this method permits you to include
entire logic sections, containing any type of instructions like *COMMIT, *XDIM_MEMBER, etc., while logic
functions can only perform string substitutions on single line statements. On the other hand, functions do
not need to be written in separate files.

Parameters

You can pass parameters to the included logic. The parameters are referenced as %P1%, %P2%, etc.

For example:

SAP Library: BPC Administration Guide

January 30, 2009 Page 116 of 217

*INCLUDE MyModule.LGF (REVENUE, COST)

The content of the file MyModule.LGF could be:

#GROSSPROFIT= [ACCOUNT].[%P1%] – [ACCOUNT].[%P2%]

#GROSSMARGIN= (([ACCOUNT].[%P1%] –
[ACCOUNT].[%P2%])/[ACCOUNT].[%P1%])*100

Note: You can get similar functionality using *SUB procedures. SUB procedures can have user-named
parameters, and do not need to be stored in individual external files.

*JOIN - more information

Allowed uses: By Commit, SQL

*JOIN({tablename} , {dimension.property} [, {tablefield}] [, {selected fields}])

Where... Is...

{tablename} The name of the user-defined table.

{dimension.property} The dimension and property that should be used to join the table with the
BPC data.

{tablefield} The field in the selected tables on which the dimension property is joined.

{selected fields} The fields in the table that are of interest in the current logic. If more than
one, the list of fields must be enclosed in double quotes.

With this instruction the rules can be linked to the values entered in some field of a user-defined table.

Example:

*JOIN(RulesTable, Account.Rule, Rule, "Destacc, Factor")

The above instruction tells the rules to join the BPC data with the data contained in a table called
Consolidation Rules, performing a join of the property Rule of the account dimension and the field Rule of
the RulesTable table. The fields to read in the RulesTable are DestAcc and Factor. Behind the scenes, the
generated SQL query looks more or less as follows:

select

….., mbrACCOUNT.[RULE] AS [ACCOUNT.RULE],

RULESTABLE.[DestAcc] AS [RULESTABLE.DestAcc],

RULESTABLE.[Factor] AS [RULESTABLE.Factor]

INNER JOIN RULESTABLE on mbrACCOUNT.[RULE] = RULESTABLE.[RULE]

The parameters {tablefield} and {selected fields} are optional. If omitted, the {tablefield} is assumed to
be the same as the property of the joined dimension, and the {selected fields} are assumed to be all
fields in the table. In other words, the above example could have been written as follows:

*JOIN(RulesTable, Account.Rule)

With the above technique, an account could be assigned a rule of behavior using a regular property. A
separate table of Rules could then be maintained, defining in a generic way what a rule should imply in
the execution of a rule.

Once the join has been defined, all fields in the joined table can be used anywhere in the
WHEN/ENDWHEN statement to perform the appropriate calculations.

Example:

*JOIN(AccountRules,account.rule)

*WHEN *

*IS *

*REC(FACTOR= AccountRules.Factor, ACCOUNT=AccountRules.DestAcc)

SAP Library: BPC Administration Guide

January 30, 2009 Page 117 of 217

*ENDWHEN

By nature a join only accepts the values of the selected BPC region of data that have in the selected
property a value corresponding to the joined field in the joined table. In other words, still referring to the
above example, all records not having a valid Rule is skipped, even if included in the selected region. This
could also be considered as a way to filter the members of a dimension without using a
XDIM_MEMBERSET instruction.

*LAST_MEMBER - more information

Allowed uses: By Commit, MDX

*LAST_MEMBER {Dimension name} = {Member}

With this instruction, the rule is run for the indicated dimension from the first passed member to the
member specified in the instruction itself. For example, if the instruction says:

*LAST_MEMBER TIME=2002.DEC

…the logic runs from the first modified period up to period 2002.DEC.

The year can be made dynamic using the keyword %PREFIX% as follows:

*LAST_MEMBER TIME=%PREFIX%.DEC

In this case, the year is the year of the last modified period.

The instruction can also interpret some MDX functions in the passed parameters. These can be used, for
example, to define an offset from a given period. The following syntax:

*LAST_MEMBER TIME=[%PREFIX%.DEC].LEAD(6)

enables the rules to run from the first selected period until June of the following year.

The member name must be enclosed in brackets ([]) to be recognized as an MDX call. The dimension
name must be omitted from the expression.

*LOCAL_CURRENCY - more information

Allowed uses: Global, MDX, SQL

*LOCAL_CURRENCY= {local currency member}

Changes the default local currency member from "LC" to the specified member.

Example:

*LOCAL_CURRENCY= ValutaLocale // this is Italian!

This instruction must be used in all applications where the local currency member of the currency
dimension is named differently from "LC", even if the local currency member is not explicitly mentioned in
your logic formulas, because there are several cases where the Logic engine creates queries that make
automatic reference to it behind the scenes.

This instruction can be entered just once in the whole logic and does not need to be repeated in each
commit section. For a cleaner design, a good practice is to include this instruction in the application
constants library APP_CONSTANTS.LGL.

*LOGIC_BY - more information

Allowed uses: Global, MDX, SQL

*LOGIC_BY = {dimensions list}

(Only valid for *LOGIC_MODE = 2)

Overrides the default dimensions to scan in order to build the names of logic files to execute when in logic
mode 2.

In logic mode 2 (multiple logics), the program builds the names of the logics to execute reading the
content of the user-defined property named “LOGIC” in all members being processed for the dimensions
CATEGORY and ENTITY.

For example, if the category and entity being processed are ACTUAL and SALESITALY respectively, and
these members have, as “LOGIC” property, the values ‘ACT’ and ‘1’ respectively, the logic being executed
is ACT1.LGX.

SAP Library: BPC Administration Guide

January 30, 2009 Page 118 of 217

The dimensions to scan in order to build the name of the logic to execute are by default category and
entity, but this default can be overridden with the instruction:

*LOGIC_BY = {dimensions list}

For example, the instruction could say:

*LOGIC_BY = TIME, DATASRC

This means that the logic varies by time period and by member of the DATASRC dimension.

The order in which the dimensions are written in the instructions controls the sequence in which the
content of the ‘LOGIC’ properties are concatenated (the module reads the dimension names from left to
right). Any number of dimensions can be specified.

Blank values for the ‘LOGIC’ property are acceptable, as long as at least one of the dimensions listed in
the instruction has a non-blank value (otherwise the resulting logic name is blank).

LOGIC_MODE is automatically set to 2 in case the instruction *LOGIC_BY is used.

The Logic engine does not set any limit to the number of dimensions by which the logic may vary.
However, we recommend to not use more than two dimensions for this purpose, as this could lead to a
very high number of logic files to define and maintain and excessive fragmentation of the logic execution
in many small queries, resulting in unsatisfactory performance.

*LOGIC_MODE - more information

Allowed uses: By Commit, MDX

*LOGIC_MODE = 0 | 1 | 2

The Logic module can select the logic to execute according to three different “logic modes”:

• Mode 0: run the default logic DEFAULT.LGX.

• Mode 1: override the default logic, and use a different one.

• Mode 2: override the default logic, and use one or more logics, identified using some special
criteria.

By default, the Logic module runs in mode 0 (use the default logic), but the mode could be overridden
with the logic instruction:

*LOGIC_MODE = 0 | 1 | 2

(In reality this instruction makes only sense in the form: *LOGIC_MODE = 2, as the former two settings
would be useless inside a logic file. Their values are controlled by the UI of the EvDTSRunLogic task).

The instruction:

*LOGIC_MODE = 2

tells the program NOT to run the default logic or any other given logic, but to run one or more logics, to
be identified according to some specific criteria. In this mode, the Logic module scans the data file for all
members of dimensions listed in the *LOGIC_BY instruction, searches for a property named "LOGIC", and
uses that property to build the logic file name.

For example, if you enter "ENTITY" and the data file contains records for SalesItaly, and SalesItaly has
"LOGIC_XYZ" in the LOGIC field, the logic file used against the data of entity SalesItaly is
LOGIC_XYZ.LGX.

Note: If not set up correctly, setting the logic mode to two (2) can cause a serious degradation of
performance. Plan carefully if you think you need to use this feature.

LOGIC_MODE is automatically set to 2 in case the instruction *LOGIC_BY is used and this instruction
generally never has to be specifically invoked by someone writing logic files.

*LOGIC_PROPERTY - more information

Allowed uses: Global, MDX, SQL

*LOGIC_PROPERTY = {property name}

This instruction works in conjunction with *LOGIC_BY. This instruction is used to override the default
name of the property driving the selection of the logic to use.

SAP Library: BPC Administration Guide

January 30, 2009 Page 119 of 217

This feature can be useful when the default property name "LOGIC" is already taken by another set of
logics. For example the DEFAULT logic could vary by category using the default property LOGIC while a
consolidation logic could vary by category using the property CONSOL_LOGIC.

Example:

// Content of DEFAULT.LGF

//--

*LOGIC_BY = CATEGORY

// Content of CONSOL_LOGIC.LGF

//--

*LOGIC_BY = CATEGORY

*LOGIC_PROPERTY = CONSOL_LOGIC

Content of CATEGORY.XLS:

ID LOGIC CONSOL_LOGIC

ACTUAL Default1 ConsLogic1

BUDGET Default2 ConsLogic2

*LOOKUP / *ENDLOOKUP - more information

Allowed uses: By Commit, SQL

This set of instructions can be used in conjunction with a WHEN/ENDWHEN structure to retrieve (lookup)
some other values that may be needed either in the calculation of the new value or to define some criteria
to be evaluated. The lookup can be performed in the current application or into a different application.

The lookup mechanism essentially defines a relationship between the current record being processed and
another record in a corresponding user-defined record set. For example, in a currency translation, you
may want to identify, in the RATE application, the value of the rate for the current entity, category and
period.

The syntax is:

*LOOKUP {App}

*DIM [{LookupID}:] {DimensionName}="Value" |
{CallingDimensionName}[.{Property}]

[*DIM …]

*ENDLOOKUP

Where... Is...

{App} The name of the application from which the amounts are searched

{DimensionName} A dimension in the lookup app

{CallingDimensionName} A dimension in the current application

{LookupID} An optional identifier of the “looked-up” amount. This is only required
when multiple values must be retrieved.

Example:

*LOOKUP RATE

*DIM ENTITY2="DEFAULT"

*DIM SOURCECURR:INPUTCURRENCY=ENTITY.CURR

*DIM DESTCURR1:INPUTCURRENCY="USD"

SAP Library: BPC Administration Guide

January 30, 2009 Page 120 of 217

*DIM DESTCURR2:INPUTCURRENCY="EURO"

*DIM RATE=ACCOUNT.RATETYPE

*ENDLOOKUP

In the above example, three different values are retrieved from the INPUTCURRENCY dimension (the rate
of the currency of the current entity, the rate of the currency EURO and the rate of the currency USD).
Each of these values has been assigned a specific identifier (SOURCECURR, DESTCURR1 and DESTCURR2)
that are used somewhere in the WHEN/ENDWHEN structure.

Any dimension not specified in the lookup instruction is assumed to match with a corresponding dimension
in the source application. In the above example, the following instructions have been omitted, because
redundant:

*DIM CATEGORY=CATEGORY

*DIM TIME=TIME

In the following example, a currency translation in the two reporting
currencies USD, and EURO is performed.

// --- Get the rates

*LOOKUP RATE

*DIM ENTITY2="DEFAULT"

*DIM RATE=ACCOUNT.RATETYPE

*DIM SOURCECURR:INPUTCURRENCY=ENTITY.CURR

*DIM DESTCURR1: INPUTCURRENCY="USD"

*DIM DESTCURR2: INPUTCURRENCY="EURO"

*ENDLOOKUP

// --- Translate

*WHEN ACCOUNT.RATETYPE

 *IS "AVG","END"

*REC(FACTOR=LOOKUP(DESTCURR1)/LOOKUP(SOURCECURR),CURRENCY=”USD”)

*REC(FACTOR=LOOKUP(DESTCURR2)/LOOKUP(SOURCECURR),CURRENCY=”EURO”)

 *ELSE

*REC(CURRENCY=”USD”)

*REC(CURRENCY=”EURO”)

*ENDWHEN

*COMMIT

// --

Below is a different example of how a LOOKUP amount can be used to define a WHEN criteria. In this
case, what is being tested is an amount (corresponding to a consolidation METHOD) in the lookup
application. (The logic is not very meaningful, but it is a simplified version of a real one. Take it only as an
example of valid syntax)

// ----------------Get the methods and percent consol

*LOOKUP OWNERSHIP

*DIM INTCO="IC_NONE"

*DIM PARENT="MYPARENT"

*DIM MY_METHOD: ACCOUNTOWN="METHOD"

*DIM IC_METHOD: ACCOUNTOWN="METHOD"

SAP Library: BPC Administration Guide

January 30, 2009 Page 121 of 217

*DIM PCON: ACCOUNTOWN="PCON"

*DIM MY_METHOD:ENTITY=ENTITY

*DIM IC_METHOD: ENTITY=INTCO.ENTITY

*DIM PCON: ENTITY=ENTITY

*ENDLOOKUP

*WHEN LOOKUP(MY_METHOD) // check my method

 *IS 1,2,3

*WHEN LOOKUP(IC_METHOD) // check the method of the partner

 *IS 1,2,3

 *REC(FACTOR=LOOKUP(PCON), PARENT ="MYPARENT")

 *ENDWHEN

*ENDWHEN

// ---

Finally, a LOOKUP keyword can also be used as part of an *IS statement, as shown in the following
example:

// ---------- Get the percent consols

*LOOKUP OWNERSHIP

*DIM INTCO="IC_NONE"

*DIM PARENT="MYPARENT"

*DIM PCON: ACCOUNTOWN="PCON"

*DIM IC_PCON:ACCOUNTOWN="PCON"

*DIM PCON: ENTITY=ENTITY

*DIM IC_PCON:ENTITY=INTCO.ENTITY

*ENDLOOKUP

*WHEN LOOKUP(PCON)

*IS <= LOOKUP(IC_PCON)

*REC(FACTOR=-1, PARENT ="MYPARENT",DATASRC="ELIM")

*ENDWHEN

// --

The *WHEN instruction can also take a property as a parameter of one of the dimensions of the
application against which a *LOOKUP has been performed, even if such dimension does not exist in the
current application.

In the following example, a currency translation checks for the MD field of the source currency, in order to
decide what formula to apply to the rate (Multiply or Divide):

//-----------------------------------

// load the rates from the RATE application

//-----------------------------------

*LOOKUP RATECUBE

*DIM RATEENTITY="GLOBAL"

*DIM RATE=ACCOUNT.RATETYPE

*DIM SOURCECURR:INPUTCURRENCY=ENTITY.CURR

SAP Library: BPC Administration Guide

January 30, 2009 Page 122 of 217

*DIM USD:INPUTCURRENCY="USD"

*NEXT

*ENDLOOKUP

//===

// define the translation rule

//===

*WHEN ACCOUNT.RATETYPE

*IS “AVG”,”END”

// check the multiply or divide property of the currency

*WHEN INPUTCURRENCY.MD

*IS "D"

 *REC(FACTOR=LOOKUP(USD)/LOOKUP(SOURCECURR),CURRENCY="USD")

*ELSE

 *REC(FACTOR=LOOKUP(SOURCECURR)/LOOKUP(USD),CURRENCY="USD")

*ENDWHEN

*ELSE

*REC(CURRENCY="USD")

*ENDWHEN

The LOOKUP instructions must define the link between the dimension referenced to in the WHEN
statement and one of the dimensions of the current application. In the above example the logic
understands automatically that it needs to evaluate the MD field of the InputCurrency matching the
Currency of the current Entity.

MDX-based LOOKUP

The *LOOKUP / *ENDLOOKUP structure normally generates an SQL query, and, as such, is unable to
return values calculated by the OLAP application. To overcome this limitation a different version of the
LOOKUP instruction has been implemented. This instruction generates an MDX query and, as a result,
allows the retrieval of any value available in the application.

The syntax is:

*OLAPLOOKUP [{application name}]

All other instructions specified inside the structure remain the same as a regular LOOKUP instruction.

Example:

*OLAPLOOKUP FINANCE

*DIM ENTITY="SALESEUROPE"

*DIM ACCOUNT="REVENUE"

*ENDLOOKUP

The above example is able to retrieve the REVENUE account of entity SALESEUROPE, even if one or both
these members are parent or otherwise calculated by the application.

This feature, although less efficient than an SQL-based LOOKUP, can be particularly useful for accessing
aggregated data that need to be used in the factor of an allocation logic. Below is an example of allocation
logic where the expense HUMAN_RES_EXP incurred by the entity CORP_SERVICES is allocated to all
children of EUROPE based on their number of employees (HEADCOUNT):

//---

*XDIM_MEMBERSET ENTITY=[ENTITY].[EUROPE].children

*OLAPLOOKUP FINANCE

SAP Library: BPC Administration Guide

January 30, 2009 Page 123 of 217

*DIM TOT_HC:ENTITY="EUROPE"

*DIM TOT_HC:ACCOUNT="HEADCOUNT"

*DIM TOT_HR:ENTITY="CORP_SERVICES"

*DIM TOT_HR:ACCOUNT="HUMAN_RES_EXP"

*ENDLOOKUP

*WHEN ACCOUNT

*IS HEADCOUNT

*REC(FACTOR=LOOKUP(TOT_HR)/LOOKUP(TOT_HC),ACCOUNT="ALLOCATED_HR_EXP")

*ENDWHEN

//---

*MEASURES - more information

Allowed uses: By Commit, MDX

*MEASURES = {dimension}

Use this instruction to tell the Logic module that the results of the query in the measures dimension
contain information from another dimension.

This functionality can be used whenever a logic calculates members using the measures dimension, for
efficiency.

*MEMBERSET - more information

Allowed uses: By Commit, MDX, SQL

*MEMBERSET({variable}, {member set in MDX format})

Allows you to retrieve a list of elements from a dimension and save it in a user-defined variable for later
use anywhere else in the logic.

For example, with this instruction:

*MEMBERSET((%REPORTING_CURRENCIES%, “filter{[CURRENCY].members,
[currency].properties(“GROUP”)=”REP””)

You can fill the variable %REPORTING_CURRENCIES% with the list of reporting currencies defined in the
current application. The content of the resulting variable can then be used anywhere in the logic, as in this
example:

*XDIM_MEMBER_SET CURRENCY=%REPORTING_CURRENCIES%

Important remarks:

1. The MEMBERSET statement generates an MDX query, and can be preferred to the SELECT
statement to perform complex hierarchical selections or in general whenever an MDX query is
more appropriate than a SQL one. If you want to select a list of elements from a dimension using
a SQL query, use the *SELECT statement.

2. In case any parameter contains embedded commas the entire parameter must be enclosed in an
extra set of double quotes.

3. The *MEMBERSET statement is executed at the time the logic is validated, and the expanded
result is written in the LGX file. This means that if the related dimension is modified, it may be
necessary to re-validate the logic.

4. Statements returning no members do not necessarily cause the validation of the logic to fail. In
this case a warning is entered in the validation log.

5. These instructions are not specific to a given logic section, but they can be written once
anywhere in the logic and used across multiple commit sections.

Memory variables

It is possible to create intermediate result and assign them to dummy members (like dummy accounts or
dummy members of any other dimension). These members can be used as placeholders to store

SAP Library: BPC Administration Guide

January 30, 2009 Page 124 of 217

intermediate results that can be used as inputs for subsequent calculations. These values are
automatically skipped at commit time.

Dummy members must be identified with a leading pound (#) sign. For example:

*REC(ACCOUNT = #TEMP)

Account #TEMP does not exist in the account dimension. The generated record can be used somewhere
else in the rules, but its value is not stored in the database.

Example:

*WHEN ACCOUNT.FLAG

*IS = Y

*REC(ACCOUNT=#TEMP)

*ENDWHEN

*GO

*WHEN ACCOUNT

*IS #TEMP

*REC(FACTOR=GET(ACCOUNT=MULTIPLIER),ACCOUNT=FINAL)

*ENDWHEN

The above technique could be used in an allocation procedure, requiring the calculation of the total value
of the coefficient to use in the allocation process. Alternatively, you could calculate an opening balance
amount that does not need to be stored in the database.

The dummy members generated with this technique do not exist in any dimension. Because of this, it is
not possible to assign to them properties that could be used in the rules. They can only be referenced
using their ID.

Using memory variables in WHEN / ENDWHEN instructions

When a memory variable represents a real member of a dimension, you can now access its properties in a
WHEN / ENDWHEN structure.

The logic may use the properties of a valid memory variable in evaluating a WHEN criteria as well as in the
definition of a destination member.

The following example uses the property of a memory variable to read an aggregated value from a parent
and transfer it into a base level member whose ID is stored in a parent’s property:

//---

// create the memory variables (in this case the parents in H1, for
example #SALES, #WORLDWIDE1)

*CALC_DUMMY_ORG ENTITY=PARENTH1

// Some parent might have a corresponding input member specified in a
property

*WHEN ENTITY.INPUTMEMBER

*IS<>””

*REC(ENTITY=ENTITY.INPUTMEMBER)

*ENDWHEN

//---

Similarly, it is now possible to access the value of a memory variable from a GET instruction, using the
syntax shown in the following example:

SAP Library: BPC Administration Guide

January 30, 2009 Page 125 of 217

//---

*XDIM_MEMBER ACCOUNT=SQ_FEET

// create the memory variables

*CALC_DUMMY_ORG ENTITY=PARENTH1

// Calculate the allocation factor of each base member (note # used to
identify the dummy parent)

*WHEN ENTITY.ISBASEMEM

*IS=”Y”

 *REC(FACTOR=1/GET(ENTITY=# + ENTITY.PARENTH1) * 100,
ACCOUNT=PCT_SQ_FEET)

*ENDWHEN

//---

If the base-level members have many levels of parents, it is also possible to specify the number of levels
to ascend, in the search for the value of a “parent” member. The syntax is:

GET(dimension=dimension.property (number of levels))

The example below is a search performed in a parent that is 4 levels above current member. Note that
this example does not use memory variables, because the parents in the stored hierarchy PARENTS1 are
actually stored (in fact the function used is CALC_ORG and not CALC_DUMMY_ORG).

//---

*XDIM_MEMBER ACCOUNT=SQ_FEET

// Calculate the parents to store

*CALC_ ORG ENTITY=PARENTS1

// Calculate the allocation factor of each base member having 4 levels of
parents above

*WHEN ENTITY.PARENTS1

*IS<>””

 *REC(FACTOR=1/GET(ENTITY=ENTITY.PARENTS1(4)) * 100,
ACCOUNT=PCT_SQ_FEET)

*ENDWHEN

//---

*NO_PARALLEL_QUERY - more information

Allowed uses: By Commit, SQL

*NO_PARALLEL_QUERY

This instruction suppresses the generation of parallel queries on the server.

SQL server automatically tries to run multiple queries in parallel, if possible. In case many k2logic
executions are requested to the server simultaneously, this mechanism may end up using too much
memory on the server, ultimately slowing down the process, or even generating an "out of memory"
error.

SAP Library: BPC Administration Guide

January 30, 2009 Page 126 of 217

*PRIOR more information

It may sometimes happen that two different data categories need to be linked in time for some logic
calculation. A good example is a BUDGET category that must retrieve the opening balances of the balance
sheet from category ACTUAL.

This link can now be easily established with the following instruction:

*PRIOR {dimension name} = {member ID}

Example:

*PRIOR CATEGORY = ACTUAL

This instruction automatically forces the retrieval of prior period’s values from a different category (in this
case ACTUAL).

An alternative syntax allows the dynamic retrieval of the name of the prior category reading a property of
the current category, like in this example.

*PRIOR CATEGORY = CATEGORY.PRIORCAT

Note that this syntax only makes sense in a case where the logic needs to go backwards in time to
retrieve values from past periods. For example, assume you want to load in memory the three months
preceding the first modified month. This will be normally achieved with the instruction:

*XDIM_MEMBERSET TIME = PRIOR(3),%SET%

However, if the first modified period is FEB, going backwards three months will cross the year-end
boundary, and NOV and DEC will be retrieved from last year. Now, if last year’s data are not stored in the
current category but in a different one, the above instruction will do the job.

It is important to realize a few things:

1. Prior category does not need to be included in the set of categories to load in memory: its data
will be automatically loaded in memory if needed (according to the number of periods the logic
goes backwards).

2. The values of prior category will be available for processing by the logic, but it is very likely that
these should not be modified (last year data might even be locked) and the logic will have to skip
them. However, the way to control this is NOT to check the name of the category with something
like:

// This will not work!!!

*WHEN CATEGORY

*IS ACTUAL

The good news is that in reality what needs to be skipped are not the values coming from prior
category, but the values coming in ANY of the prior periods, irrespective of whether they belong to
ACTUAL or BUDGET (if the first modified period is FEB, all three periods NOV DEC and JAN must
not be changed). This condition can be easily tested with these instructions:

// This will work!!!

*WHEN TIME

*IS PRIOR

3. The logic will always work as if all periods come from current category, even while reading
records that come from prior category. For this reason the destination category does not need to
be specified in the REC instructions.

// This will write in ACTUAL, even if reading a record coming from BUDGET

*REC(ACCOUNT=”#TEMP”,TIME=NEXT(3))

4. In lead and lag calculations the most common (and sometimes difficult) decision to take is
whether one should get values from the past or push values into the future. This may sometimes
depend on the type of formula. In most cases it is more practical to push values into the future
using the existence of values in the past as triggers.

// Example

*WHEN ACCOUNT

SAP Library: BPC Administration Guide

January 30, 2009 Page 127 of 217

*IS COLLECTIBLES_AT_THREE_MONTHS

*REC(ACCOUNT=#COLLECTIONS_AT_THREE_MONTHS, TIME=NEXT(3))

*ENDWHEN

Note that this logic should only write in valid periods (<>PRIOR). This is why the logic stores the
value in a temporary variable (using a leading pound sign #). The temporary values can then be
written only if the period is correct.

*WHEN TIME

*IS <> PRIOR

*WHEN ACCOUNT

*IS #COLLECTIONS_AT_THREE_MONTHS

*REC(ACCOUNT=COLLECTIONS_AT_THREE_MONTHS)

*ENDWHEN

*ENDWHEN

5. This instruction will only work as desired if only ONE CATEGORY at a time is modified by the user
during data entry (or processed from a Data Manager task). The administrator should somehow
make sure that a logic containing this instruction is used correctly.

6. It is important to remember to use the above techniques in conjunction with the
*CALC_EACH_PERIOD option. This will enforce the calculation of all periods in the correct
sequence.

*PROCESS_EACH_MEMBER - more information

 Allowed uses: Global, MDX, SQL

*PROCESS_EACH_MEMBER={dimname1}[, {dimname2}, …]

This instruction enforces a commit for each member of the selected dimension in the whole logic file, not
just in a specific *COMMIT section. This instruction is similar to *COMMIT_EACH_MEMBER with the
following important differences:

• It applies to the entire rule and not to a specific COMMIT section

• It is processed separately, before the rule is interpreted. This makes the rules behave
exactly as if it had been called multiple times (once for each member in the dimensions listed
in the instruction).

• The member set to process for the named dimensions must be explicitly passed to the rules
call, as if such dimension sets were required (see instruction XDIM_REQUIRED).

• It applies to both MDX logic as well as SQL logics (while currently COMMIT_EACH_MEMBER
only works on MDX logic)

Similar to the COMMIT_EACH_MEMBER instruction, this instruction processes the TIME dimension in a
special way. It sorts the time members from the oldest to the newest and fills all gaps in the range. For
example, if the members passed are:

2001.Mar, 2001.Jan

Then the resulting set whose members are processed individually is:

2001.Jan, 2001.Feb, 2001.Mar

*PROCESS_FAC2 - more information

Allowed uses: By Commit, MDX, SQL

*PROCESS_FAC2

This instruction can be used to trigger the processing of the FAC2 partition of BPC cubes after a commit
directly into the FAC2 partition has been performed. The instruction applies to a single commit section.

Example:

*WRITE_TO_FAC2

SAP Library: BPC Administration Guide

January 30, 2009 Page 128 of 217

*PROCESS_FAC2

WHEN *

*IS *

 *REC(…..)

*ENDWHEN

*COMMIT

*PUT - more information

Allowed uses: By Commit, MDX, SQL

This instruction can be used to directly write values in a selected region. The syntax is:

*PUT({dimension}={member}[,{dimension}={member}]
[EXPRESSION={expression}….)

Example:

*PUT(ACCOUNT=FLAG, INTCO=NONE, CURRENCY=LC, EXPRESSION=123)

This instruction writes the value 123 in account=flag, intco=none and currency=lc for all entities,
categories and time periods passed in the selected region.

The instruction can be used to flag a region of data with a value indicating the status of the data. For
example, whenever data is entered in a certain entity, the default logic could flag that entity as impacted.
Later on, a currency conversion could be executed just for the impacted entities. At the end of its
execution, the translation logic could de-impact these entities, by setting their flag account back to zero.

Important remarks:

The parameters can only take explicit values and cannot be derived from a dimension property (unless
passing through a SELECT instruction).

The scope of the records to write is by default defined as all the members passed for the dimensions
category, time and entity. This default scope can be modified with the instruction *PUTSCOPE_BY, which
is similar to the SCOPE_BY instruction, but is specific to the PUT instruction.

Example:

*PUTSCOPE_BY=CATEGORY, TIME, DATASRC

The destination member(s) must be specified for all dimensions. The dimensions defined in the scope
derive the correct members from the passed region. All other dimensions must have one member
specified in the PUT parameters or by a XDIM_MEMBERSET or similar instruction.

Example:

*XDIM_MEMBERSET INTCO=NONE

*XDIM_MEMBERSET CURRENCY=LC

*PUT(ACCOUNT=FLAG, EXPRESSION=123)

The EXPRESSION parameter is optional. If omitted it defaults to 1. This example generates a value of 1
for account flag:

*PUT(ACCOUNT=FLAG)

Multiple PUT instructions can be specified in the same commit section. Example:

*XDIM_MEMBERSET INTCO=NONE

*XDIM_MEMBERSET ACCOUNT=FLAG

*PUT(CURRENCY=USD)

*PUT(CURRENCY=EURO)

The PUT instruction MUST be defined in a STANDALONE COMMIT section. It cannot be mixed with MDX
formulas or with WHEN/ENDWHEN structures.

The PUT instruction always and automatically enforces a *calculate_difference=0

SAP Library: BPC Administration Guide

January 30, 2009 Page 129 of 217

The PUT instruction supports the ability to write into an application different from the source. The
following is a valid example of logic that runs from a RATE application and writes in the FINANCE
application.

*destinationapp=finance

*skipdim=inputcurrency

*skipdim=rate

*skipdim=entity2

*adddim intco=non_interco

*Adddim datasrc=%DATASRC% // this is needed if the datasrc is re-directed
in the PUT

*Adddim account=flag

*adddim currency=lc

*adddim entity=dummy

*PUT(datasrc=input)

*PUT(datasrc=adjustment)

*QUERY_FILTER - more information

Allowed uses: By Commit, MDX

*QUERY_FILTER={member}

This instruction enforces a *QUERY_TYPE=2 (nonemptycrossjoin) in the MDX rules execution, and causes
the system to search for existing values to be performed on the passed member.

Example:

*QUERY_FILTER=NetProfit

The rules module assumes the member to be an account if no dimension is specified. Otherwise, the
correct dimension can be explicitly named in the usual MDX format, for example, as follows:

*QUERY_FILTER=[CATEGORY].[ACTUAL]

*QUERY_SIZE - more information

Allowed uses: By Commit, MDX

*QUERY_SIZE = 0 | 1 | 2

When the module runs in multi-rule logic mode (*LOGIC_MODE = 2), it automatically tries to group the
regions of data sharing the same logic to execute and tries to run the largest possible queries against a
given logic, in order to maximize the speed of execution. In many cases, however, the resulting queries
may be too large to fit in memory, and the performance of large queries can actually deteriorate
significantly, instead of improving.

To prevent this situation, the administrator can use the *QUERY_SIZE instruction with the following
values:

• 2 is the (default) largest size of queries

• 1 is an intermediate size, and

• 0 is the smallest practical size

Note: Note that the effects of this instruction combine with those of the instruction XDIM_MAXMEMBERS,
in defining the scope of the queries ultimately being run. The appropriate combination of these
two setting should be identified, in order to identify the best compromise between performance
and memory usage.

Breaking the query in multiple queries (when scanning a data file)

When the rules module scans a data file to build a region against which to run, it breaks the query into
many smaller queries, according to the different combinations of members it finds in the file, for the
dimension defining the scope. See *SCOPE_BY. In this situation, similar to the case of multiple rules

SAP Library: BPC Administration Guide

January 30, 2009 Page 130 of 217

(logic_mode = 2), the program can try to maximize the size of the query, according to the setting of the
QUERY_SIZE parameter.

*QUERY_TYPE - more information

Allowed uses: By Commit, MDX

You can control the type of MDX queries generated by the rules engine. Set this instruction to 0 (default
multi-axis), 1 (row/column/multiple crossjoins in rows), or 2 (one nonemptycrossjoin).

While the rules module by default generates a multi-axis query, the format of the MDX query can be
controlled by the logic using the instruction:

*QUERY_TYPE=0 | 1 | 2

Where... Is...

0 The default multi-axis type

1 A row/column type, with multiple crossjoins in rows

2 A row/column type, with one nonemptycrossjoin in rows

The query type 1 (row/column crossjoin) can be useful when you want to check the generated query using
Microsoft MDX Samples program. This product, in fact, does not support multi-axis queries. A query type 1
can simply be copy/pasted from the debug file into the MDX sample UI and executed.

While the type 2 (nonemptycrossjoin) is by far the fastest format, it only gives the desired results in
selected cases, and it must be used with care. One example of its use can be found in the Default
translation logic in Apshell. This type of query can be also controlled using the instruction
*QUERY_FILTER.

*RENAME_DIM - more information

Allowed uses: By Commit, MDX, SQL

*RENAME_DIM {dimension name}={value}[,{dimension name}={value},…]

Works in conjunction with the *DESTINATION_APP instruction to post results of logic calculations to a
different application.

*RUN_STORED_PROCEDURE - more information

Allowed uses: By Commit

Used to invoke the execution of an SQL stored procedure.

*RUN_STORED_PROCEDURE={stored procedure name}('{params}')

Example:

*RUN_STORED_PROCEDURE=spEliminate(ACTUAL,'2001.JAN')

Parameters containing delimiter characters (like 2001.JAN) should be passed between single quotation
marks (like '2001.JAN').

To pass multiple values in a single parameter, it may be appropriate to enclose them between single
quotes. However, it is up to the stored procedure code to support the un-packing of that parameter into
its individual members, if appropriate. See this example:

*RUN_STORED_PROCEDURE=spCompare('2001.JAN,2001.FEB','ITALY,FRANCE')

Stored procedures must be written in their own commit section, i.e., they cannot coexist with a
WHEN/ENDWHEN structure, nor can be part of any MDX rules. On the other hand, multiple stored
procedures can be executed from the same commit section, like in the following example:

*RUN_STORED_PROCEDURE=FirstProcedure('%TIME_SET%')

*RUN_STORED_PROCEDURE=SecondProcedure('%TIME_SET%')

*COMMIT

[account].[#SALES]=Units * Price

SAP Library: BPC Administration Guide

January 30, 2009 Page 131 of 217

*COMMIT

The instruction RUN_STORED_PROCEDURE supports the keyword %APP% as the current application
name. This is a common requirement for stored procedures that need to work on different applications.

Support of a log table in a stored procedure

The parameters passed to a stored procedure can include the name of a log table that the stored
procedure can fill with whatever information is appropriate. The name of the table is generated
automatically by the rules engine and passed to the stored procedure, once the table has been
successfully created. This table contains a single field named "MSG" that can be filled with any length of
text (it is of type NTEXT).

Once the stored procedure has completed execution and has written messages in the log table, the Logic
engine reads its content and merges it into the normal rules log file, then the table is automatically
dropped.

To activate this feature you must include in the list of parameters passed to the stored procedure the
keyword %LOGTABLE%. The rules engine replaces it with the appropriate table name.

Example:

*RUN_STORED_PROCEDURE=spEliminate('%APP%','ACTUAL', '2001.JAN',
'%LOGTABLE%')

Support of blank parameters passed to a stored procedure

A stored procedure fails if one of the required parameters is blank (null string). This situation may occur,
for example, if one of the parameters is a set of members that was left blank in a DTS prompt, indicating
that ALL members be processed.

The rules engine automatically traps this situation by replacing any null parameter ('') with the <NULL>
keyword ('<NULL>'). The stored procedure has to check for parameters with a <NULL> value and take
the appropriate action.

Example:

This instruction:

*RUN_STORED_PROCEDURE=spEliminate('', '2001.JAN')

is converted into:

*RUN_STORED_PROCEDURE=spEliminate('<NULL>', '2001.JAN')

where <NULL> must be interpreted by the stored procedure as (for example) ALL categories.

Passing the selected region to a stored procedure using a table

The parameters passed to a stored procedure can now include the name of a temporary table that the
logic engine will use to store the members of the selected region for which it was invoked. The name of
the table is generated automatically by the rules engine and passed to the stored procedure, once the
table has been successfully created and populated with the appropriate information. This table will contain
two fields named DIMENSION and MEMBER, respectively, and will be populated by the rules engine with
one record per dimension/member combination that has been passed to it by the calling program.

Once the stored procedure has completed execution, the table is automatically dropped by the rules
engine.

To activate this feature, you must include the keyword %SCOPETABLE% in the list of parameters passed
to the stored procedure. The logic engine will replace it with the appropriate table name.

Example:

*RUN_STORED_PROCEDURE=spEliminate([%SCOPETABLE%])

*RUNLOGIC - more information

Allowed uses: Global, MDX, SQL

Allows you to redirect the execution of a logic file towards a different data region than the one for which
the logic was originally executed. Used in conjunction with *APPSET, *APP, *LOGIC, and *DIMENSION.

These instructions can be used to redefine:

• The application set

SAP Library: BPC Administration Guide

January 30, 2009 Page 132 of 217

• The application

• The selection of dimension members

• The logic to run

Possible uses:

• To enter data in one period and trigger an allocation across all periods of the year

• To enter data in one entity and trigger the elimination logic for the elim-entities

• To modify an exchange rate in the rate application and trigger a translation in the main
application

The instructions must be written between a *RUNLOGIC and a *ENDRUNLOGIC command. Here is the full
list of supported instructions:

*RUNLOGIC

*APPSET= {AppSet} //optional

*APP = {App} //optional

*LOGIC = {logicname} //required

*DIMENSION {dimname} = {member set} //optional (one per dim allowed)

*ENDRUNLOGIC

All instructions are optional except *LOGIC.

The following list is a summary of rules regarding the *RUNLOGIC instruction:

• All logic properties that are not redefined with one of these instructions retain the values
they have in the calling logic (for example, if the application is not redefined, the rules push
is performed against the original application).

• The RUNLOGIC sections contained in a logic file is executed at the END of the entire rules
execution, regardless of their position in the rules relative to all other statements.

• Multiple RUNLOGIC sections can be entered in the same rules file. They are executed in the
order in which they are encountered.

• RUNLOGIC sections contained in rules called by a RUNLOGIC statement are ignored (In other
words RUNLOGIC calls cannot be nested).

• The instruction DIMENSION can be used to redefine the scope of execution in a given
dimension. Multiple DIMENSION instructions can be used to redefine the member sets of
multiple dimensions in the current data region.

Examples:

//execute eliminations in elim entities

//---

*RUNLOGIC

*DIMENSION ENTITY=filter([entity].members,[entity].property('ELIM')='Y')

*LOGIC=Intco

*ENDRUNLOGIC

//execute currency translation in main app

//---

*RUNLOGIC

*APP=MAIN

*DIMENSION ENTITY2= //blank out scope of invalid dims

*LOGIC=DefaultTranslation

*ENDRUNLOGIC

Special Keywords in the DIMENSION instruction

The strings passed to the instruction DIMENSION can contain the keyword:

SAP Library: BPC Administration Guide

January 30, 2009 Page 133 of 217

%{dimname}%

For example, if the main logic is being run for entity EUROPE, the following logic push is executed for all
children of EUROPE:

*RUNLOGIC

*DIMENSION ENTITY = [ENTITY].[%ENTITY%].children

*LOGIC=SomeLogic

*ENDRUNLOGIC

Also, if the main rules was run for more than one entity (example: EUROPE and US), the logic push is
performed for the children of each of them, using the following selection in the rules query:

{[ENTITY].[EUROPE].children, [ENTITY].[US].children}

Note: This works if the calling selection enumerates the members individually as follows:

DIMENSION:ENTITY

EUROPE, US

In case the calling selection contains an MDX statement, this is treated as one member. The following
example would not work in the above context

DIMENSION:ENTITY

[WORLD].children

Members sub-names

The keyword %DIMNAME% can be adjusted to return only the prefix or the suffix of a member name.

For example, if the passed member set for the TIME dimension contains the member:

2001.JAN

The keywords return:

%TIME% 2001.JAN

%TIME_PREFIX% 2001

%TIME_SUFFIX% JAN

Here is an example that uses the prefix keyword to perform an allocation:

*RUNLOGIC

*DIMENSION TIME=descendants([time].[%TIME_PREFIX%.total],99,leaves)
*LOGIC=AllocationLogic

*ENDRUNLOGIC

If the user enters data for more than one month for the SAME year, the rules push is smart enough to
process that year only once.

*SCOPE_BY - more information

Allowed uses: Global, MDX, SQL

*SCOPE_BY = {dimensions list)

By default, the data region is restricted to only the members found in an existing data file or values from
an Excel sheet for all dimensions except the account dimension. This instruction allows you to expand the
scope of the data region.

Using this instruction can be extremely useful to expand the scope of a logic execution, when data is
entered through BPC for Excel or from an import file. If, for example, the formulas to execute should span
across all products, regardless of what products have been modified, it is possible to expand the scope of
the execution to all products by redefining the “SCOPE_BY” with a list of dimensions that does not include
the product. In this case the instruction could be:

*SCOPE_BY = CATEGORY, TIME, ENTITY

To be precise, the logic runs for all non-calculated products.

SAP Library: BPC Administration Guide

January 30, 2009 Page 134 of 217

In many cases it may be more practical to modify the scope of the logic execution using the instruction
*XDIM_MEMBERSET. This instruction allows the administrator to specify what members to process for a
given dimension, in effect, overriding the default scope with greater precision.

*SELECT - more information

Allowed uses: Global, MDX, SQL

*SELECT ({variable}, {What}, {From}, {Where})

Allows you to retrieve a list of elements from a dimension and save it in a user-defined variable for later
use anywhere else in the rules.

For example, with this instruction:

*SELECT(%REPORTING_CURRENCIES%, “ID”, “CURRENCY”, “[GROUP] = 'REP'”)

In this case, you retrieve the ID of all members in the CURRENCY dimension where the property GROUP
has the value REP. Running this example fills the variable %REPORTING_CURRENCIES% with the list of
reporting currencies defined in the current application.

Important information

1. The SELECT statement generates a SQL query, and NOT an MDX query. This implies that it can
be executed against any SQL table existing in the application set database, and not just against
the properties of a dimension in the application. The prefix "mbr" is automatically added to any
name entered in the table parameter. Otherwise, the name of the table is taken as is. If you want
to select a list of elements from a dimension using an MDX query, see the *MEMBERSET
statement.

2. In case any parameter contains embedded commas the entire parameter must be enclosed in an
extra set of double quotes.

3. The *SELECT statement is executed at the time the logic is validated, and the expanded result is
written in the LGX file. This means that if the related dimension is modified, it may be necessary
to re-validate the rules.

4. Statements returning no members do not necessarily cause the validation of the rules to fail. In
this case a warning is entered in the validation log.

5. These instructions are not specific to a given logic section, but they can be written once
anywhere in the rules and used across multiple commit sections. The following example works
correctly.

//example ---

*SELECT(%INCACC%, "[ID]", "ACCOUNT", "ACCTYPE='INC'")

*XDIM_MEMBERSET ACCOUNT=%INCACC%

[category].[#realistic]=[category].[actual] *1. 2

*COMMIT

*XDIM_MEMBERSET ACCOUNT=%INCACC%

[category].[#optimistic]=[category].[actual] *1. 3

//end of example --

Note also that, since the *SELECT statement is expanded first, it can be placed anywhere in the
logic. The above example would work even if the select statement was the LAST line in the logic,
like this:

//example ---

*XDIM_MEMBERSET ACCOUNT=%EXPACC%

[category].[#realistic]=[category].[actual] * 1.2

*COMMIT

SAP Library: BPC Administration Guide

January 30, 2009 Page 135 of 217

*XDIM_MEMBERSET ACCOUNT=%EXPACC%

[category].[#optimistic]=[category].[actual] *1. 3

*SELECT(%EXPACC%, "[ID]", "ACCOUNT", "ACCTYPE='INC'")

//end of example --

The special format **SELECT()

The instruction SELECT can also be invoked with a double leading asterisk. This triggers the execution of
the instruction before any expansion is performed on the logic file (like function substitutions or file
inclusions). This feature can be useful in case the result of the SELECT instruction is needed to control
other tasks like INCLUDE or RUNLOGIC, which could be dependant on the result of the SELECT itself.

Example:

//--

**SELECT(%MYFILE%, [filename], MyTable, ”[CATEGORY]=’%CATEGORY_SET%’ AND
[ENTITY]=%ENTITY_SET%’”)

*INCLUDE %MYFILE%.LGF

//--

In the above example an included rules file is derived from an entry in a special table using the passed
category and entity as key. Note that in this case the keywords %CATEGORY_SET% or %ENTITY_SET%
must contain only one member each.

Note: A rule containing a **SELECT instruction can only be executed in LGF format. Such rules might
also refuse to validate if the result of the instruction is a function of the region passed at runtime,
like in the above example.

*SELECTCASE / *ENDSELECT - more information

Allowed uses: By Commit, MDX

*SELECTCASE {expression}
*CASE {value1}[,{value2},…]

{formulas}
[*CASE {value1}[,{value2},…]

{formulas}
[*CASEELSE]

{formulas}
*ENDSELECT

where:

{expression} is the condition to be evaluated

{value1},.. is the range of comma-delimited results that satisfy the condition for the current case

This structure replaces the need for multiple, nested *IIF statements and helps make your rules code
more readable.

*SKIP_DIM - more information

Allowed uses: By Commit, MDX, SQL

*SKIP_DIM= {dimension name}[,{dimension name},…]

Works in conjunction with the *DESTINATION_APP instruction to post results of rules calculations to a
different application. See the *DESTINATION_APP topic for more information.

*STORE_ORG - more information

Allowed uses: ByCommit, SQL

Sometimes it happens that a section of SQL-based logic needs to read the value of a parent member, to
perform some subsequent calculation. (For example it may need to store a profit and loss net profit into a
balance sheet account). This instruction allows you to store in the writeback table all parent members of a
given dimension as specified in a property like PARENTH1, PARENTH2, etc.

The syntax is:

SAP Library: BPC Administration Guide

January 30, 2009 Page 136 of 217

*STORE_ORG {dimension name} = {property name}

Example:

*STORE_ORG ACCOUNT = PARENTH1

The STORE_ORG instruction must be executed standalone is its own COMMIT section.

There is no particular drawback to storing records in the writeback table that OLAP never sees (parent
members are recalculated on the fly in the OLAP cube), except that this may increase the size of the
writeback table unnecessarily, especially if the selected organization has many intermediate parents.

While it may work, duplicating the values of OLAP parents in the database is nota recommended way to
use this feature. A much more practiced approach is to use this instruction to store the values of "parent-
like" members, defining some generic property such as MYPARENTH1 or MYSUBTOTALS, and using it to
store members that for the application are NOT parents in any real hierarchy.

This also permits you to store only the appropriate parents, skipping all non-required intermediate parents
that a true organization may include for other reasons. For example you could store just the value of Net
Income in a dummy organization defined in property MYORG, skipping all other parents like Gross Profit,
NPBT, etc. In this case, the logic statement is:

*STORE_ORG ACCOUNT = MYORG

*SUB / *ENDSUB - more information

Allowed uses: Global, MDX, SQL

*SUB {SubName}({Param1}[,{Param2}…])

{body text}

{body text}

[….]

*ENDSUB

A SUB structure allows you to define reusable logic sections that can be invoked anywhere in the body of
the rules to make the rules easier to read and maintain. When a SUB is then invoked somewhere else in
the rules, its body lines are inserted in the rules with all the values passed to its parameters appropriately
replaced.

SUBs behave similarly to included files to which any number of parameters can be passed. When the logic
is validated, the invoked subs are inserted in the body of the logic as if they were included files invoked
with an *INCLUDE instruction. However, to invoke a SUB structure, no special keyword is required. A SUB
is simply called inserting a line with the name of the SUB, followed by the values assigned to its parameter
enclosed in brackets. The other important difference from included files is that a SUB does not need to be
written in a file of its own, but can be written in any part of the logic, more similarly to a FUNCTION.

Example:

// Here the sub is defined

//---------------------------------

*SUB MYSUB(Param1,Param2,Param3,Param4)

[AccountDim].[#Param1]= [AccountDim].[Param2]+ [AccountDim].[Param3]

[AccountDim].[#Param4]= [AccountDim].[#Param1]*
[AccountDim].[Factor_Param4]

*ENDSUB

// Here the sub is used

//---------------------------------

MySub(A1,B1,C1,D1)

MySub(A2,B2,C2,D2)

MySub(A3,B3,C3,D3)

Similar to FUNCTIONs, SUBs are not position-sensitive, and can be defined anywhere in a logic, and, if
desired, stored in separate library files that must then be merged with the logic using an INCLUDE

SAP Library: BPC Administration Guide

January 30, 2009 Page 137 of 217

instruction. Also, SUBs can be invoked in any commit section of the logic without the need to be “re-
defined” in each section.

SUBs without parameters are supported, but they must always be followed by brackets when invoked, like
in this example:

// Here the sub is defined

//---------------------------------

*SUB SetTheAppropriateRegionToClear

*CLEAR_DESTINATION

*XDIM_MEMBERSET INTCO=NonIntco

*XDIM_MEMBERSET PRODUCT=NoProduct

*XDIM_CURRENCY=%REPORTING_CURRENCIES%

*ENDSUB

// Here the sub is used

//---------------------------------

SetTheAppropriateRegionToClear()

*SYSLIB - more information

Allowed uses: Global, MDX, SQL

*SYSLIB {Includedfile} (Param1,Param2,….)

This instruction works like the *INCLUDE instruction, however the file to be included is searched for in a
reserved folder that is only intended to contain logic libraries provided by BPC that should not be modified.
This folder is located below the Appset folder with the name "SystemLibrary\Logic Library".

Parameters

You can pass parameters to the included logic. The parameters are referenced as %P1%, %P2%, etc.

For example:

*SYSLIB sys_logic.LGF (REVENUE, COST)

The content of the file sys_logic.LGF could be:

#GROSSPROFIT= [ACCOUNT].[%P1%] – [ACCOUNT].[%P2%]

#GROSSMARGIN= (([ACCOUNT].[%P1%] –
[ACCOUNT].[%P2%])/[ACCOUNT].[%P1%])*100

Time-shift instructions

To simplify the calculation of leads and lags in financial reporting applications, the following instructions
are available for SQL-based logic:

• PRIOR

• NEXT

• BASE

• FIRST

The instructions PRIOR and NEXT support an optional numeric parameter. This parameter represents the
number of time periods by which the current period must be shifted. If omitted, the function assumes a
time shift of 1 period (forward or backwards). Negative values are accepted (A negative value for a NEXT
function corresponds to a positive value for a PRIOR function and vice-versa).

Examples:

TIME=NEXT // In a monthly application this means next month

TIME=PRIOR(3) // Three periods backwards

TIME=NEXT(-3) // Same as PRIOR(3)

SAP Library: BPC Administration Guide

January 30, 2009 Page 138 of 217

The keyword BASE always represents the last period of the prior fiscal year. When the fiscal year is a
normal calendar year and the frequency is monthly, the base period of 2004.JUN is 2003.DEC.

The instruction BASE can be useful in YTD applications, where the opening balances need to be retrieved
from the last period of the prior year.

The keyword FIRST always represents the first period of the current fiscal year. When the fiscal year is a
typical calendar year and the frequency is monthly, the base period of 2004.JUN is 2004.JAN.

In case the time shift goes past the boundaries of the TIME dimension, these time shift functions return no
period.

These functions can be used in four ways:

1: To redirect the destination period in a *REC statement

Example 1: *REC(TIME=NEXT)

Example 2: *REC(TIME=BASE)

2: To retrieve a value from a different period in a *REC statement

Example 1: *REC(FACTOR=GET(TIME=PRIOR(3))

Example 2: *REC(FACTOR=GET(TIME=BASE)

3: To add periods to the selected data region in a XDIM_MEMBERSET statement

Example: *XDIM_MEMBERSET TIME=PRIOR, %TIME_SET%

In this example, if the first modified period is 2004.APR, the instruction PRIOR adds 2004.MAR to
the region to process.

4: When the keywords PRIOR, FIRST or BASE are added to a XDIM_MEMBERSET instruction, the time
period PRIOR, FIRST or BASE can be also evaluated in a WHEN / ENDWHEN structure, as in the following
example:

*WHEN TIME

*IS PRIOR

// ignore

*ELSE

*REC(…)

*ENDWNHEN

In the presence of an XDIM_MEMBERSET containing the PRIOR keyword, like in the above example, the
WHEN structure recognizes 2004.MAR as PRIOR period.

*USE - more information

Allowed uses: By Commit, MDX, SQL

*USE {usedfile}(Param1,Param2,….)

The USE instruction behaves like the *INCLUDE instruction, but only the members that are needed by the
calling logic are included. This generates smaller, faster to execute LGX files.

The instruction *USE must be called again after each *COMMIT instruction. This rule does not apply to
*INCLUDEd files.

Files included with the *USE keyword take the same default path and extension of the included files.

All special instructions (like *COMMIT and other instructions) are ignored, if found in a "USEd" file. We can
say that when a rules file is "USEd" by another file, the only thing the calling file is interested in is the list
of calculated members the “USEd” file contains. This restriction does not apply to "INCLUDEd" files.

All temporary accounts contained in USEd files should always be named with a leading exclamation mark,
even if this is not technically required. They could also begin with a pound sign (#), but, in this case, the
rules module tries to write their resulting values in the application.

Example

'--

SAP Library: BPC Administration Guide

January 30, 2009 Page 139 of 217

*USE TranslationMembersFile

[account].[#cost] = -
([currency].[lc],[account].[grosssales])/[account].[!End]

[account].[#revenue] = -
([currency].[lc],[account].[cost])/[account].[!Avg_End]

'--

The file TranslationMembersFile may contain the definitions of many accounts, but only those for
[account].[!End] and [account].[!Avg_End] is included in the calling logic.

WHEN/ENDWHEN

This set of instructions triggers the use of SQL syntax rather than MDX syntax. This structure works in the
same way as the SELECTCASE / ENDSELECT structure, but the instructions that it processes are not the
usual MDX formulas of a modeling logic, but some *REC() statements that generate new records.

*WHEN / *ENDWHEN - more information

Allowed uses: By Commit, SQL

This set of instructions triggers the use of SQL syntax rather than MDX syntax. This structure works in the
same way as the SELECTCASE / ENDSELECT structure, but the instructions that it processes are not the
usual MDX formulas of a modeling logic, but some *REC() statements that generate new records.

The syntax is:

//---

*WHEN {criteria}

*IS {valid condition1}[,{valid condition2},…]
*REC[([FACTOR|EXPRESSION={Expression}[,{dim1}={member},{dim2}=…])]

[*REC[([FACTOR|EXPRESSION={Expression}[,{dim1}={member},{dim2}=…])]]

….

[*ELSE]

…

…

*ENDWHEN

//---

Where... Is...

{criteria} What to test. Typically, this is a property of the current member of a dimension.
The syntax is:

DimensionName.Property

Example:

*WHEN ACCOUNT.RATETYPE

{criteria} can also use the reserved keyword LOOKUP().

{ValidCondition} One or more values that meet the criteria. They can be enclosed in double quotes
if they need to be treated as strings. If they represent numeric values, the quotes
should be omitted.

Examples:

*IS "AVG","END"

SAP Library: BPC Administration Guide

January 30, 2009 Page 140 of 217

*IS 10,20,30

If no operator is specified, the *IS clause assumes the presence of an equal sign
(*IS = "AVG", "END"). Other types of comparisons are also supported. The
following examples represent valid conditions:

*IS > 2

*IS <= 7

*IS <>"ABC"

{ValidCondition} can also be a dimension property specified with the simple
format:

*IS dimension.property

Notes:

• Multiple operators (like "<>" or ">=") must not be separated by any space. One or more
blanks can be inserted between the operators and the value.

• If any operator is used, only one value can be passed. (This syntax is invalid: *IS >2,3,4)

• Other operators like AND, OR and NOT are not currently supported.

The following are valid examples of using *WHEN:

*WHEN ENTITY

*IS INTCO.ENTITY

…

*WHEN ACCOUNT.SCALE

*IS <>CURRENCY.SCALE

WHEN criteria special case

A special case of *WHEN criteria is:

*WHEN *

This criteria can be used when there is actually no criteria to test. In this case, the *WHEN statement is
only needed to trigger the SQL mode. The correct syntax is:

*WHEN *

 *IS *

 *REC(…)

*ENDWHEN

Improved recognition of PRIOR(n) periods in * IS statements

In logic like the following…:

*CALC_EACH_PERIOD

*XDIM_MEMBERSET TIME = PRIOR(3), %SET%

*WHEN TIME

*IS PRIOR

//………

*ENDWHEN

…all 3 periods of data preceding the first period in %SET% will be recognized as PRIOR in the statement
*IS PRIOR

SAP Library: BPC Administration Guide

January 30, 2009 Page 141 of 217

If, for example, the user modifies 2005.MAR and 2005.MAY, the three period 2004.DEC, 2005.JAN, and
2005.FEB will meet the criteria stated in the *IS line.

This allows the logic to recognize periods that may have been loaded in memory only with the purpose of
calculating some lags in the time dimension. A fair example of how to use this feature is represented by
the following logic:

*XDIM_MEMBERSET ACCOUNT=REVENUE,PRICE,PAYMENTS

*CALC_EACH_PERIOD

*XDIM_MEMBERSET TIME=PRIOR(3),%SET%,%PREFIX%.DEC

*WHEN ACCOUNT

*IS REVENUE

*WHEN GET(ACCOUNT="PRICE")

*IS 0

*REC(ACCOUNT=#PAYMENTS0,TIME=NEXT(0))

*IS 1

*REC(ACCOUNT=#PAYMENTS1,TIME=NEXT(1))

*IS 2

*REC(ACCOUNT=#PAYMENTS2,TIME=NEXT(2))

*IS 3

*REC(ACCOUNT=#PAYMENTS3,TIME=NEXT(3))

*ENDWHEN

*ENDWHEN

*GO*WHEN TIME

*IS<>PRIOR // prior here means any period before first in %SET%

*WHEN ACCOUNT

*IS #PAYMENTS0,#PAYMENTS1,#PAYMENTS2,#PAYMENTS3

*REC(ACCOUNT=PAYMENTS)

*ENDWHEN

*ENDWHEN

Nesting of *WHEN/*ENDWHEN

WHEN / ENDWHEN structures can be nested by as many levels as desired, and in any sequence. For
example, the following structure could be a valid one:

*WHEN xxx

 *IS "A"

 *REC(…)

 *REC(…)

 *IS "B"

 *REC(…)

 *WHEN yyy

 *IS "C","D","E"

 *REC(…)

 *ELSE

 *REC(…)

SAP Library: BPC Administration Guide

January 30, 2009 Page 142 of 217

 *ENDWHEN

*ENDWHEN

Note: Indentation is used just for readability purposes, and is not required by the syntax.

The *REC instruction

The *REC() instruction tells the program what to do once a criteria has been met. Each REC instruction
generates ONE new record to be posted to the database. Each source record can generate as many
records as desired, even pointing to the same destination cell.

The parameters of the REC() function specify what to modify of the original record. Any dimension
member can be modified with the syntax:

{DimensionName}={member}

Example: *REC(CURRENCY="USD", ENTITY="SALESITALY")

{member} must be enclosed between double quotes and can contain the name of any dimension,
enclosed between the percent sign (For example: ENTITY="IC_%ENTITY%"). In this case, the dimension
name is replaced with the value of the current member for that dimension, and not with just the
dimension name.

An alternative syntax allows the rules to retrieve the member name from the value of a property of any
dimension. In the following example, the entity name is read from the "ENTITY" property of the current
member of the INTCO dimension:

*REC(FACTOR=-1, ENTITY=INTCO.ENTITY)

The option NOADD for the *REC() instruction

There are cases when multiple values found in a source region should generate a certain fixed value for a
given destination record and such values should be the same, regardless of how many source records
have been encountered. An example could be the need to assign a value of 1 to a "flag" account, if any
account of the selected region has a value. This is done in a SQL logic by inserting the option NOADD
anywhere in the REC statement.

Example:

*WHEN ACCOUNT.TYPE

*IS "AST"

*REC(EXPRESSION=1, NOADD, ACCOUNT=" FLAG_AST")

*ENDWHEN

Using the LOOKUP value in dimension redirection

The REC() statement can use the value of a LOOKUP to define a destination member. For example this
could be a valid syntax:

*REC(ACCOUNT = LOOKUP(LK1))

This generates a numeric account ID corresponding to the value retrieved by the LOOKUP.

This syntax also support a (limited) string concatenation functionality, like in this example:

*REC(ACCOUNT = ACC_ + LOOKUP(LK1))

If the value of the lookup is 20, the resulting destination account is ACC_20.

The FACTOR and EXPRESSION instructions

The amount to assign to the new record can be derived from the original amount with either the
instruction FACTOR or the instruction EXPRESSION.

The FACTOR instruction defines a factor by which the retrieved amount is to be multiplied.

*REC(FACTOR=1/1.55)

SAP Library: BPC Administration Guide

January 30, 2009 Page 143 of 217

The EXPRESSION instruction defines any formula that results in the new value to post. The formula can
include regular arithmetic operators, fixed values and the keyword %VALUE%, representing the original
retrieved value.

*REC(EXPRESSION=%VALUE% + 1000)

Both FACTOR and EXPRESSION can also contain the reserved keyword LOOKUP(), as described later.

The FLD() instruction inside a FACTOR or EXPRESSION

In a FACTOR or EXPRESSION it is also possible to specify a dimension property using the special format:

FLD(dimension.property)

Here is a valid example:

*WHEN ENTITY.SCALE

*IS <>""

*REC(EXPRESSION=%VALUE%*FLD(ENTITY.SCALE))

*ENDWHEN

This syntax is a slight departure from the usual format where the dimension property does not need to be
enclosed inside a FLD() clause. This format has been adopted in order to (1) retain good performance in
the logic execution, (2) simplify the logic validation and (3) allow for future extensions of logic
functionality.

All the syntaxes that are supported by the FACTOR and EXPRESSION instructions can be combined inside
a calculation expression, like in the following (meaningless) example:

*REC(EXPRESSION=%VALUE%*FLD(ENTITY.SCALE)+
GET(ACCOUNT=ACCOUNT.MYACC)*5*LOOKUP(XYZ))

The GET() instruction

You can assign a FACTOR or an EXPRESSION to a source value in order to calculate a new value inside a
*REC() statement in SQL rules. The factor and the expression can include formulas using hard-coded
values (factor=1.3) or values retrieved using the LOOKUP function (factor=lookup(avg)).

In addition to the above, you can use the keyword GET(), which allows you to use values from some
other record within the selected region.

The syntax is:

GET({dimension}={member}[, {dimension}={member}]…)

Where... Is...

{dimension} A valid dimension name

{member} A valid dimension member. This can be an explicit member name like "ABC" enclosed
in double quotes, or it can be derived by reading the property of the current member
of any dimension.

Valid examples include:

GET(ACCOUNT="ABC")

GET(ACCOUNT=ACCOUNT.MYPROPERTY)

GET(ACCOUNT=ACCOUNT.ELIMACC,ENTITY=INTCO.ENTITY)

For example, assume that you want to calculate the account Revenue as follows:

#Revenue = Units * Price //this is the MDX format

The SQL rules formula is:

SAP Library: BPC Administration Guide

January 30, 2009 Page 144 of 217

*WHEN ACCOUNT

*IS "UNITS"

*REC(ACCOUNT="REVENUE" FACTOR=GET(ACCOUNT="PRICE")

*ENDWHEN

The get statements also supports the concatenation of properties with trailing fixed strings as follows:

GET(dimension=dimension.property + string)

Example:

GET(ACCOUNT=ACCOUNT.ID + .INP)

Note: While using the Get() instruction in SQL provides the ability to perform much more complex
calculations than the system previously allowed in SQL rules, it has some limitations that might
make it preferable to use MDX logic. Here is a further explanation of the limitations to using the
SQL logic GET() instruction:

• The value to retrieve is not queried from the database, but it is searched for in the currently
selected record set. (If the value is not found, it is assumed to have a value of zero). This
implies that all values required by the logic must be included in the region to process. In the
previously described example, the logic does not work correctly unless the account PRICE
has been included in the region to scan, with something like:

*XDIM_MEMBERSET ACCOUNT = Units, Price

This is fundamentally different from the way any MDX rules works: MDX can automatically retrieve
from the application all necessary information, even if not included in the queried region.

SAP Library: BPC Administration Guide

January 30, 2009 Page 145 of 217

• The logic is not able to use the results of a previously calculated value. The following
example does not work:

*WHEN ACCOUNT

*IS "UNITS"

*REC(ACCOUNT="REVENUE", FACTOR=GET(ACCOUNT="PRICE"))

*IS "REVENUE"

*REC(ACCOUNT="TAXES", FACTOR=.5)

*ENDWHEN

…Unless the two calculations are separated by a commit statement:

*WHEN ACCOUNT

*IS "UNITS"

*REC(ACCOUNT="REVENUE", FACTOR=GET(ACCOUNT="PRICE"))

*ENDWHEN

*COMMIT

*WHEN ACCOUNT

*IS "REVENUE"

*REC(ACCOUNT="TAXES", FACTOR=.5)

*ENDWHEN

*TEST_WHEN - more information

Allowed uses: By Go/Commit, SQL

When you have conditions in your logic that are not dependant on the records being scanned, you might
only want to test those conditions once. For example, you might want to test that there is a specific
keyword or that a certain cell of the application has a specific value in the selected set of members for a
given dimension. Rather than applying the condition to the entire set of records to scan, the condition can
be evaluated before the WHEN / ENDWHEN loop, with the following instruction:

*TEST_WHEN({condition})

The {condition} is a string that the logic engine passes to a Visual Basic script for evaluation. If the
returned value is TRUE, the subsequent WHEN / ENDWHEN loop is processed. Otherwise the entire loop is
skipped.

Example:

// skip the loop if Budget is not among the passed categories

*TEST_WHEN(instr("%CATEGORY_SET%","BUDGET")>0)

*WHEN *

//…..

*ENDWHEN

*GO

// skip the loop if account FLAG is zero for a certain time,intco
combination

*TEST_WHEN(GET(ACCOUNT="FLAG",INTCO="NON_INTERCO",TIME="2004.JAN")<>0)

*WHEN *

//…..

SAP Library: BPC Administration Guide

January 30, 2009 Page 146 of 217

*ENDWHEN

As shown in the above example, the instruction supports the use of the %{dim}_SET% keyword. It also
supports the GET instruction, to retrieve a value from the recordset. When one or more GET instructions
are used in the evaluation of the condition, you must remember to specify all required dimensions. The
non-specified dimensions default to the values they have in the first record of the source record set. In
other words, you can only omit dimensions that do not vary in the recordset being scanned.

Another syntax supported anywhere in this instruction is the FLD() keyword. Here is a valid example:

*CALC_EACH_PERIOD // handle periods one by one

*XDIM_MEMBERSET TIME=PRIOR, %TIME_SET% // include prior period to
selected dates

// This tests that the evaluated period is not the prior period

*TEST_WHEN(instr("%TIME_SET%","FLD(TIME.ID)")>0)

*WHEN….

The TEST_WHEN instruction is specific to the current GO section. If the script does not contain a GO
section, it is specific to the current COMMIT section.

POS() keyword

The POS() keyword can be used in a WHEN / ENDWHEN structure when you need to compare the position
of the current time period relative to a different one. This situation may arise when a logic must change
behavior when passing beyond a certain date. For example, the first three months of a year may contain
actual data, where some accounts are input, and the other months contain budget data, where the same
accounts are calculated.

The new keyword comes in two formats:

POS(TIME) // to use in a *WHEN instruction

And

POS({time}) // to use in a *IS instruction

The correct structure is:

*WHEN POS(TIME)

*IS <>= POS({time})

//…..

…where {time} must be an explicit date. For example:

*WHEN POS(TIME)

*IS <>=POS(“2005.MAR”)

//……

To make the date more dynamic, you can use the *FLAG_PERIOD instruction. See *FLAG_PERIOD.

*WRITE_TO_FAC2 - more information

Allowed uses: By Commit, MDX, SQL

*WRITE_TO_FAC2

This instruction triggers the posting of the results directly to the short-term data storage table (tblFAC2)
of the AppSet.

If this instruction is found in a given COMMIT section, the records to be posted end up directly in the FAC2
table rather than real-time data storage (the write back table).

SAP Library: BPC Administration Guide

January 30, 2009 Page 147 of 217

This mechanism can be helpful when a rules execution may generate a significant amount of new records,
leading to a very fast increase in the content of the write back table, which in turn would cause a
significant degradation of performance in all I/O activities.

Note: At the end of the rules execution a processing of the FAC2 partition is required, in order to make
the results of the logic available to the application. This can be done adding an appropriate task at
the end of the DTS package that executed this type of rule. Alternatively the *PROCESS_FAC2
instruction can be used.

*WRITE_TO_FILE - more information

Allowed uses: Global, MDX, SQL

This instruction writes a copy of all records to be posted into the specified file in a textual, comma-
delimited format.

This setting automatically suppresses the writing of the records to the log file, and the results are not
written to the application, even if the simulation mode is off.

If no path is included in the file name, the Data Manager data files path is used. If no extension is
included, a TXT extension is appended to the file name.

Note: This instruction is only supported in "overwrite formula" mode (*logic_mode=1), and can only be
entered in the "add formula" text box of the DTS logic task (k2DTSRunlogic). If written in a logic
file directly, it is ignored.

*XDIM_ADDMEMBERSET - more information

Allowed uses: By Commit, MDX, SQL

*XDIM_ADDMEMBERSET {dimension} = {members set}

The rules can merge a specific set of members with the members passed in the region for which the rules
should be executed using this instruction.

This instruction is similar to the instruction *XDIM_MEMBERSET. The difference is that, while
XDIM_MEMBERSET redefines the region passed by you, XDIM_ADDMEMBERSET adds the defined set to
the passed region.

For example, if a user enters a value in entity SalesItaly, and the default rule says:

*XDIM_ADDMEMBERSET ENTITY=SalesFrance

…the logic is executed for SalesItaly AND SalesFrance.

On the other hand, if the rule simply said:

*XDIM_MEMBERSET ENTITY=SalesFrance

…the rule would have been executed for SalesFrance only, regardless of the entity where the data had
been entered.

*XDIM_DEFAULT - more information

Allowed uses: Global, MDX

*XDIM_DEFAULT {Dimension name} = {Members Set}

You can redefine the default member set of a dimension using this command. Typically, when no member
set is passed to a dimension, the rules module automatically queries all non-calculated members of that
dimension (with the exception of the currency dimension, if existing, which defaults to the LC member).

The difference with XDIM_MEMBERSET is that XDIM_DEFAULT is only used if no selection is passed for the
specified dimension, while XDIM_MEMBERSET is used in any case. In practical terms, this only applies to
logics called by a TDS package, because BPC for Excel always passes the selection for all dimensions
(except the accounts).

*XDIM_FILTER - more information

Allowed uses: By Commit, MDX, SQL

*XDIM_FILTER {Dimension name} = {Members Set}

*XDIM_FILTER {Dimension name} < or > {Time member}

SAP Library: BPC Administration Guide

January 30, 2009 Page 148 of 217

The member set used for a given dimension can be filtered using a user-defined criteria with this
instruction. This instruction does not replace the passed set with a hard-coded set, but filters the passed
set with a predefined criteria.

For example, if the members passed for the ACCOUNT dimension are Cash, Receivables and Payables, this
instruction:

*XDIM_FILTER ACCOUNT = [account].properties("ACCTYPE")="AST"

…accepts only asset accounts, so that the resulting account set is limited to Cash and Receivables.

If no member is passed, the filter criteria will not apply to only the non-calculated members (the default
members set for all dimensions except currency), but to all members in the dimension. This could also be
used as a way to modify the default filtering criteria.

The instruction automatically removes duplicates from the filtered set. This could be helpful when a
returned member set contains duplicates, a situation that can easily be encountered in the entity
dimension where the double hierarchy returns the same entity twice.

A typical use of this feature is to filter a list of members against one or more properties. When the
members must be filtered against some values in the application (for example, only the entities that have
a value<:> 0 in a given account), the instruction to use is *XDIM_GETMEMBERSET.

The *XDIM_FILTER {Dimension name} < or > {Time member} syntax also supports the %PREFIX% and
%FLAG_PERIOD% keywords like in the following example:

*PROCESS_EACH_MEMBER=CATEGORY

*XDIM_FILTER CATEGORY=[CATEGORY].PROPERTIES("CALCULATE")="Y"

*FLAG_PERIOD=CATEGORY.FIRSTPERIOD

*XDIM_FILTER TIME = > %PREFIX%.%FLAG_PERIOD%

In such example, the selected categories are processed one by one. For each of them the property
“CALCULATE” is evaluated and only those that require calculation are processed by the logic.

Furthermore, the logic reads the property FIRSTPERIOD of the processed category, to derive the starting
month from which the periods must be processed. For example, if the FIRSTPERIOD is “APR”, and the
selected periods belong to year 2004, all periods preceding 2004.APR are ignored.

*XDIM_GETINPUTSET - more information

Allowed uses: By Commit, MDX, SQL

*XDIM_GETINPUTSET {dimension} [={member set}]

[*APP={application}] //optional

[*XDIM_MEMBERSET {dimension} [={member set}] //as many of these as needed

[*CRITERIA {expression}] //optional

*ENDXDIM

This instruction filters the members of the selected region for a given dimension according to their
compliance with some user-defined criteria that must be met by the values in the database.

XDIM_GETINPUTSET serves the same purpose of XDIM_GETMEMBERSET, but it generates an SQL query
instead of an MDX query behind the scenes. This implies that, while it can only be used to check for the
value of input cells (i.e. having entries in the fact table), it will, in most cases, deliver much better
performance and scalability.

Example:

*XDIM_GETINPUTSET ENTITY

*APP OWNERSHIP

 *XDIM_MEMBERSET ACCOUNTOWN=METHOD

*XDIM_MEMBERSET CURRENCYPARENT=C_GR_FIN

 *XDIM_MEMBERSET INTCO=TPNONE

*CRITERIA SIGNEDDATA>71

SAP Library: BPC Administration Guide

January 30, 2009 Page 149 of 217

*ENDXDIM

This filters all entities that in application OWNERSHIP have a value greater than 71 in account METHOD,
for currencyparent=C_GR_FIN, etc.

For all the dimensions not specified in the instruction, the search is performed in the corresponding
members of the selected region. For example, the category and period are those for which the logic was
being executed.

Warning: the criteria instruction can be used to filter the members against an acceptable value range.
However, currently the instruction is not able to take into account the stored sign of the selected account,
and this has to be figured out manually. For example, if the instruction is supposed to filter a REVENUE
account with a value greater than 100, the instruction should say:

*CRITERIA SIGNEDDATA<-100 // this means >100 for income accounts

…because REVENUE is stored with a negative sign.

Similarly to XDIM_GETMEMBERSET, the XDIM_GETINPUTSET instruction is specific to the COMMIT section
it is written in.

Special case: Change of dimension name across applications

The instruction *XDIM_GETINPUTSET can redefine the name of the dimension being filtered, if, when
querying a different application, such dimension has a different name than in the source application.

The syntax supports an optional “AS” statement as follows:

*XDIM_ GETINPUTSET {ThatDimension} [AS {ThisDimension}] [={member set}]

Example:

*XDIM_GETINPUTSET SOMEENTITY as ENTITY=[SOMEENTITY].members

*APP SOMEOWN

 *XDIM_MEMBERSET ACCOUNTOWN=METHOD

*XDIM_MEMBERSET RPTCURRENCY=GROUP1

 *XDIM_MEMBERSET INTCO=Non_Interco

*CRITERIA SIGNEDDATA<>0

*ENDXDIM

In the above example the members of the ENTITY dimension are extracted from the members of the
SOMEENTITY dimension existing in the SOMEOWN application.

*XDIM_GETMEMBERSET - more information

Allowed uses: By Commit, MDX, SQL

*XDIM_GETMEMBERSET {dimension} [={member set}]

[*APP={application}] //optional

[*XDIM_MEMBERSET {dimension} [={member set}] //as many of these as needed

[*QUERY_TYPE= 0 | 1 | 2] //optional

*CRITERIA {expression} //required

*ENDXDIM

This instruction filters the members of the selected region for a given dimension according to their
compliance with some user-defined criteria that must be met by the values in the application.

Example:

*XDIM_GETMEMBERSET ENTITY=[ENTITY].[PARENT1].CHILDREN

*APP=OWNERSHIP

*XDIM_MEMBERSET INTCO=I_NONE

SAP Library: BPC Administration Guide

January 30, 2009 Page 150 of 217

 *CRITERIA [ACCOUNTOWN].[METHOD]>1

*ENDXDIM

This filters all children of entity PARENT1 to only those that in application OWNERSHIP have a value
greater than 1 in account METHOD, intercompany I_NONE.

For all the dimensions not specified in the instruction, the search is performed in the corresponding
members of the selected region. For example, the category and period are those for which the logic was
being executed.

This instruction can be very useful to restrict the scope of a logic execution where you have selected a
large region of data to process. For example, a currency conversion selected for all entities could be
automatically limited to only those entities that have a value in a specified account.

Another use of this feature could be to break a complex modeling logic into independent sections
separated by multiple COMMIT instructions, and to only execute those for which some specific accounts
have changed.

Another possibility is to trigger a different type of logic based on the value of an account. For example a
FORECAST logic could only be executed for just those months where [account].[One_If_Forecast]=1.

Special case: Change of dimension name across applications

The instruction *XDIM_GETMEMBERSET can redefine the name of the dimension being filtered, if, when
querying a different application, such dimension has a different name than in the source application.

The syntax supports an optional “AS” statement as follows:

*XDIM_ GETMEMBERSET {ThatDimension} [AS {ThisDimension}] [={member set}]

Example:

*XDIM_GETMEMBERSET SOMEENTITY as ENTITY=[SOMEENTITY].members

*APP OWNERSHIP

*XDIM_MEMBERSET RPTCURRENCY=GROUP1

 *XDIM_MEMBERSET INTCO=Non_Interco

*CRITERIA [ACCOUNTOWN].[METHOD]<>0

*ENDXDIM

In the above example the members of the ENTITY dimension are extracted from the members of the
SOMEENTITY dimension existing in the SOMEOWN application.

*XDIM_NOSCAN

The instructions *XDIM_NOSCAN and *NOSCAN in *CALC_DUMMY_ORG allows you to load in memory
information that is only needed in a *GET() statement and never used in a *IS statement. For example,
in a Units * Price calculation the logic might read as follows:

*XDIM_MEMBERSET ACCOUNT=UNITS, PRICE

*WHEN ACCOUNT

*IS UNITS

*REC(FACTOR=GET(ACCOUNT=”PRICE”),ACCOUNT=”REVENUE”)

*ENDWHEN

In such situations, users can now instruct the logic to ignore the PRICE by simply saying:

*XDIM_MEMBERSET ACCOUNT=UNITS, PRICE

*XDIM_NOSCAN ACCOUNT=PRICE

*WHEN *

*IS *

*REC(FACTOR=GET(ACCOUNT=”PRICE”),ACCOUNT=”REVENUE”)

*ENDWHEN

SAP Library: BPC Administration Guide

January 30, 2009 Page 151 of 217

This makes the scanning of the record set loaded in memory somewhat faster, as all those with account
PRICE will be skipped very efficiently.

Similarly, a *NOSCAN instruction can be added to a *CALC_DUMMY_ORG structure. See *CALC_ORG.

*XDIM_MAXMEMBERS - more information

Allowed uses: By Commit, MDX, SQL

*XDIM_MAXMEMBERS {dimension}= {max number of members}

This instruction breaks the query into multiple queries if the designated maximum number of dimension
members is reached. Using this instruction can help performance if there are too many members in the
scope of the query.

In most cases, the fastest results are obtained running the logic as one single query. However, if the
number of members in a dimension is too big, the performance can deteriorate significantly. In this case it
may be preferable to break the execution in multiple queries. This can be accomplished using the
*XDIM_MAXMEMBERS instruction in the logic.

Example: *XDIM_MAXMEMBERS Entity = 50

This instruction breaks the query into multiple queries of no more than 50 entities each, in case the
entities to process exceed the limit of 50 members.

The selected dimension can be any one, including a dimension explicitly mentioned in the passed region.

The default for this option is, in MDX rules, one entity per query. In other words, if you do not specify any
value for this option, the rules module automatically generates one separate MDX query for each entity
being processed.

To reset the default value of maxmembers to ANY number of entities in MDX logics, you can set the
instruction to zero, as follows:

*XDIM_MAXMEMBERS Entity = 0 // unlimited number of entities

Important: the maximum number of members can be specified for up to TWO dimensions, like in these
examples:

*XDIM_MAXMEMBERS Entity = 50

*XDIM_MAXMEMBERS Time = 1

Or..

*XDIM_MAXMEMBERS Entity = 50, PRODUCT=100

*XDIM_MEMBER - more information

Allowed uses: By Commit (Global in the Formula script of a DTS task), MDX, SQL

*XDIM_MEMBER {dimension}={member} [TO {member}]

This instruction is similar to the *XDIM_MEMBERSET instruction, but, while it only supports ONE member
to be passed for the specified dimension, it permits you to specify a different destination member into
which the results of the rules execution must be written.

Example:

*XDIM_MEMBER CATEGORY=ACTUAL TO BUDGET

The above statement forces the logic to be executed reading the desired values from the ACTUAL
category, but writes the results into the BUDGET category.

Multiple DIM_MEMBER instructions can be entered in the same rule, like in this example:

*DIM_MEMBER DATASRC=INPUT TO ELIM

*DIM_MEMBER PARENTDIM=NONE TO GROUP1

This feature can be used to simplify some rules expressions. For example this rule...

#ACC1 = ([ACCOUNT].[X],[CATEGORY].[BUDGET])

#ACC2 = ([ACCOUNT].[Y],[CATEGORY].[BUDGET])

#ACC3 = ([ACCOUNT].[Z],[CATEGORY].[BUDGET])

SAP Library: BPC Administration Guide

January 30, 2009 Page 152 of 217

…could become:

*DIM_MEMBER CATEGORY=ACTUAL TO BUDGET

#ACC1 = [ACCOUNT].[X]

#ACC2 = [ACCOUNT].[Y]

#ACC3 = [ACCOUNT].[Z]

This instruction can also be useful when the QUERY_TYPE=2 is used. In such case, if multiple dimensions
must be nested on rows, a NonEmptyCrossJoin query could result, and it may be important to run the
query directly from the data region containing the source values, in order not to miss some of them in the
calculation (see the MDX language documentation for an explanation of the NonEmptyCrossJoin function).

*XDIM_MEMBERSET - more information

Allowed uses: By Commit (Global in the Formula script of a DTS task), MDX, SQL

*XDIM_MEMBERSET {Dimension name} = {Members Set}

While the rules module automatically builds the set of members that must be included in the logic query
for each dimension, this set can be also controlled by the rules itself using the *XDIM_MEMBERSET
instruction.

For example, in the exception translation rule we can enforce the query to generate results for all
reporting currencies with the instruction:

*XDIM_MEMBERSET CURRENCY=USD,EURO

The instruction * XDIM_MEMBERSET supports also the “not equal to” operator with the syntax:

* XDIM_MEMBERSET {Dimension}<>{MemberSet}

This operator is only supported for SQL logic (in MDX rules this feature is not needed, as the MDX syntax
allows to build any sort of sets), and can be handy to pass to the SQL query smaller lists of valid
members, that are more efficiently parsed by Microsoft SQL engine.

Example:

*XDIM_MEMBERSET INTCO<>NonInterco

This corresponds to passing the list of all intercompany members, excluding the NonInterco member.

Forcing a dimension to read all members

Using the All keyword, you can force a dimension to read all members. Previously, when you wanted to
make sure that all members of a given dimension would be loaded, irrespective of what specified in the
passed region, you would have written something like:

// a workaround

*XDIM_MEMBERSET INTCO<>INVALID

Today the rules engine supports a cleaner definition, through the keyword <ALL>. The above example can
be written as follows:

// a better syntax

*XDIM_MEMBERSET INTCO = <ALL>

This improves the readability of the logic and also generates faster SQL queries.

Added recognition of NEXT(n) keyword

The instruction XDIM_MEMBERSET, when applied to the TIME dimension, can now also handle the
keyword NEXT(n), which allows you to extend in the future the set of passed periods to process. For
example:

*XDIM_MEMBERSET TIME=PRIOR,%SET%,NEXT

// add 1 period before and 1 period after

*XDIM_MEMBERSET TIME= %SET%,NEXT(3)

// add 3 periods after

SAP Library: BPC Administration Guide

January 30, 2009 Page 153 of 217

*XDIM_REQUIRED - more information

Allowed uses: Global, MDX, SQL

*XDIM_REQUIRED={dimname}[,{dimname}]

Sets dimensions that are required in order for the rules to run from a Data Manager package. If the
specified dimension(s) are not passed to the rules from a package, then an error message is generated.

Example:

*XDIM_REQUIRED=CATEGORY, TIME

If no selection is passed for any of the required dimensions, the rule fails and displays an error message.

SAP Library: BPC Administration Guide

January 30, 2009 Page 154 of 217

Managing custom menus

Custom menus allow you to choose from an array of pre-defined business-process-oriented reports.

Adding custom menus
After creating custom menus in BPC for Excel, you can define security for them and add them to the
custom menu list in the BPC for Excel action pane. Once they are added to the list, they are available to
the appropriate users for selection in the action pane upon opening BPC for Excel.

There are two types of custom menus: a default custom menu and a team custom menu. Users will see
one type or the other, depending on their team affiliation and the custom menu setup. The default custom
menu is defined on the EV_DEFAULT tab on the custom menu workbook. If users are not part of a team,
they will only be able to access the default custom menu.

You can define one or more team custom menus that are appropriate to specific BPC teams. Users
assigned to a team will see those custom menus, and not the default custom menu.

The following rules apply when the system determines which custom menus to display in the action pane:

• If a user is not assigned to a specific team, they see the default custom menu.
• If a user is assigned to a team custom menu, they see the team's custom menu only. They do not

see the default menu.
• If a user is assigned to multiple teams, the user has the option of selecting any one of the available

team custom menus.

The following table describes the information you enter in the process.xls workbook. Enter one row of
information for each custom menu that you want to make available for selection.

Column name Description Example

Team One or more team names that have access to
the custom menu specified in the Name field.

• Admin, UserTeam
• CORPUSERS

ProcessName A name used to identify the name of the
process. For example, you can enter Budget if
you are adding a custom menu representing
the budgeting process.

• Budget
• Actual
• Administrative

Default
Process

Users may have rights to see multiple custom
menus. This field allows you to specify which
custom menu is selected by default in the
action pane. For example, if you specify Yes for
a custom menu called ADMINTASKS, then
ADMINTASKS will be selected upon logon.

Only specify Yes for one row per process.xls
workbook.

• Yes
• (blank)

Process
Description

A description for the custom menu. The
description is displayed when the custom menu
is selected in the action pane and at the top of
the custom menu.

• Current Month Results
• Administrative tasks

CV The default current view for the given custom
menu. The format is:
<dimension>=<member>,
<dimension>=<member>, ...

• Category=Actual,Time=
2005.Apr

• Category=Budget,Time=
2006.Jan

Application The application in which the custom menu
resides.

If you want users to access more than one
application using the same template, you can
enter multiple applications separated by
commas. For example, if you want a single

• Finance
• HR

SAP Library: BPC Administration Guide

January 30, 2009 Page 155 of 217

Column name Description Example

template to use applications Finance and
Finance2, enter Finance,Finance2. This
allows you to define separate current views for
each application. You use the CVOverride field
in the custom menu to define the different
current views.

If using more than one application in a custom
menu template, you must also set up the file
structure under each application folder to be
identical on the server.

MenuFile The location of the custom menu. The root
folder for custom menus is the custom menu
folder in the Wizard directory in the
application's WebExcel folder.

On a client machine, the directory is located in
the user's
My Documents\BPC\AppInfo\<AppSet>\
<application>\ eExcel\ Reports\Wizard\
custom menu Reports folder.

• ProcessMenu\
ProcessFunctions.xlt

• ProcessMenu\
AdministratorTasks.xlt

Message A short message to users about the custom
menu. This message can be changed, as
needed.

For example: "Comments are due by..." The
message is displayed in the action pane.

• Due the 3rd business day
of each month

Assigning users to a team custom menu

This procedure describes how to assign users to a team custom menu.

To assign users to a team custom menu

1. Define teams. See Adding teams.

2. When creating the custom menu, name the worksheet using the same team ID as the team ID
used in users.xls. For example, if the team ID is CORPUSERS, the custom menu's worksheet
name would be CORPUSERS. (The worksheet name is case-sensitve, and must be identical to
what was defined on users.xls.)

3. When adding a custom menu to process.xls (defined in the procedure below), associate the user
team to a custom menu. Complete the rest of the fields, as described in the procedure below for
Adding a custom menu in the action pane.

Adding a custom menu to the action pane

This procedure describes how to add custom menus to the action pane.

To add a custom menu

1. From the Admin Console, select Custom menus.

2. Define a row for each custom menu you want to add. Use the table above for descriptions.

3. Test the new information by selecting Validate Custom Menu from the action pane. If there are
any errors, fix the errors by editing the Process.xls file. Perform this step until there are no
errors.

SAP Library: BPC Administration Guide

January 30, 2009 Page 156 of 217

Managing Journals

You can use Journals to track changes and adjustments made to the database by many users, usually for
the end of month or end of quarter process.

For example, you load general ledger information into your application using Data Manager. Afterwards, a
number of users look at the data and make adjustments. Journals keeps track of who made which
changes. It also allows you to generate reports on the changes by amount, date, user, and other
properties.

The process companies follow at end of month generally has these main parts:

1) Data Manager Import

2) WebExcel data sends

3) Journal changes to data

4) Logic-based consolidation

 Journals allow a company to capture an audit trail of the changes made to the database during the review
and analysis step. You can formalize this process by setting up a special work status that locks changes
from BPC for Excel data sends and only allows changes made by Journals. See Locking data for Journal
input only.

Setting up journals

Journals are available by default. All you need to do to use the Journals feature, is to set up a journal
template for the application. After a template is created, users can create Journal Entries by filling out
required information in the template, and then posting changes to the database. You create one journal
template per application.

Journal advanced formulas

You can set up advanced formulas that are specific to Journal postings, or you can run the default
advanced formulas when journals get posted. See the *Logic functions under Rules Keyword Reference.

Glossary of journals terms

The following list of definitions of Journal terms is provided to help explain the concepts presented in this
section.

Term Description

Audit trail The audit trail is a record of posted journal entries. You can create a Journal
report that displays the audit trail.

Journal template A journal template is designed by the Administrator. Administrators can create
a different template for each application in an AppSet. A Journal Template is
used as a Journal Entry Form by a Journal User. Journal users fill out the form,
then either save or post their journal entries, depending on their level of
access.

See Creating journal templates

Journal entry Journal users create and post Journal entries by filling out the Journal Entry
form. This form is based on the journal template created by an administrator.

Users can save partially completed Journals. Incomplete Journal Entries must
have at least one field in a detail line so they can be saved.

Journal security You set up Journal security to enforce your Journal creation and posting policy.

See Setting up Journal Security

Detail dimension Dimension that you set line item information for in the Journal Entry.

Header dimension Dimension used as a "page key" for the Journal entry. No line item detail.

SAP Library: BPC Administration Guide

January 30, 2009 Page 157 of 217

Creating journal templates
You set up a journal template for each application. A journal template is an input form where users enter
journal entries.

The template consists of input fields for Header dimensions, additional header items, and detail
dimensions:

Field Description

Header Dimensions Fixed (constant) dimensions for all journals in an application.

Additional Header
Items

Text fields or lists that are saved along with the Journal entry that contain
clarifying information. Additional Header Items are not required. But if they
are present, users must give them values before posting a Journal entry.

The maximum length of a Additional Header Item entry is 128 bytes.

Detail Dimensions The dimensions that contain the data you need to change. They are set up in
columns so that each row under the dimension name becomes a detail line.
You fill in members for each of the dimensions and the debit or credit amount
for that detail line.

The maximum number of detail lines is determined when you use the Journal
assistant. See the procedure below for more information.

Note: If you already created a Journal Template, creating a new template
that changes the structure of the journal entries deletes the old
template and all journal entries associated with that template. This
removes your audit trail, even though changes made to the application
data through posted Journal entries are maintained. If you recreate
the Journal template, but do not change the structure of the template
(keep all header and detail dimensions the same), then you have the
option to keep the existing journal entries.

For more information on the journal template, see BPC for Excel Help.

To create a journal template

1. Log on the appropriate application set, and start the Admin console.

2. Select Application, and then select the application for which you want to create the journal
template.

3. Select Journals, and from the action pane, select Journal wizard.

4. In the Select Header Dimensions step, select the dimensions you want in the header of the
Journal template. The header dimensions become "page keys" for the journal entry. The following
dimensions are required to be placed in the header: Category, Time, and RptCurrency (if defined
in the application). Click the Next button to continue.

5. In the Set Header Dimension Order step, you can change the top-to-bottom order of the
header dimensions. When you are finished, click the Next button.

6. The remaining dimensions in your application that have not been placed in the header become
detail dimensions. These are the dimensions that you will add line items to for a journal entry. In
the Set detail dimensions step, you can change the left-to-right order of the detail dimensions
and you can set the maximum number of detail lines. When you are finished, click the Next
button to continue.

7. On the Create additional header items step, you can create extra header text fields. You can
also change the text fields to selection boxes by defining sub-items for one of the additional
header items. To add items:

a. Click the left Add button, then type the name of the additional header item and its maximum
length, then click Add. The dialog box remains on the screen so you can enter more items.
The maximum length of an Additional Header Item is 128 bytes. Continue to add items, and
then click OK.

SAP Library: BPC Administration Guide

January 30, 2009 Page 158 of 217

b. To change one of the items to a selection list, Click the item to select it, and then click the
sub-item Add button. Type the name of the sub-item, and then click Add. Continue to add
items, and then click OK.

Note: The word “Remark” is a restricted keyword and cannot be used as a header item name.

8. When you are finished creating additional header items, click the Next button.

9. Review your new journal template information on the Summary screen, and then click the Finish
button to create the Journal Template.

Note: See the BPC for Excel documentation for information on using journal templates to create journal
entries.

Setting up journal security
You set up journal security to enforce your Journal creation and posting policy. Journal security is a
component of task security, and uses application member access rights. For example, if you give users
create access, but do not give them write access to a data region, those users will not be able to create
journal entries for that data region.

Journal security involves defining users that can administer (AdminJournal), create (CreateJournal),
review (ReviewJournal), post (PostJournal), or unpost (UnpostJournal) entries. Given 'AdminJournal'
rights, the user can create templates and clear journal tables.

Note: This procedure describes how to set journal security only, but you can also combine journal
security tasks with other tasks. For example, if you give one or more users or teams the default
'PrimaryAdmin' task profile rights, they can perform all journal tasks, as well as the others granted
by that administrator-type.

To set up journal security

1. From the Admin console, select Security, then Task Profiles.

2. Select Add new task profile, and the set up a Task Profile called "Journals," and give it a
description. Click Next. (By not selecting any check boxes, you are creating a custom task profile
that can apply to journals only.)

3. From the View tasks by interface drop-down, select Journals.

4. Select one or more of the journal tasks, then click Next.

5. Select one or more teams or users to assign the selected rights, then click Next.

6. Click Apply to save and process the task profile.

7. Click OK at the confirmation prompt.

Clearing journal tables
Users with 'AdminJournal' rights can clear journal entries from an application database. This includes all
journals and journal security setup. You might use this option to clear journals before you move from a
development environment to a production environment.

Take caution when doing this, as it removes journals from an application. Any posted changes to the
database will remain, but you will lose your audit trail.

To clear journal tables

1. Log on the appropriate application set, and start the Admin console.

2. Select Application, and then select the application for which you want to clear journal
information.

3. Select Journals, and from the action pane, select Clear journal table.

4. Select Yes at the confirmation prompt.

SAP Library: BPC Administration Guide

January 30, 2009 Page 159 of 217

Limiting journal dimension member lists
You can limit the number of dimension members that are available to users during journal entry.
Normally, all base-level members that the user has access to are available when the user fills out journal
template. By using the EnableJRN property for each dimension for which you want to limit members, you
can control the available members when users double-click member cells in the journal template.

For example, you might want only some account members used for journal entries, regardless of whether
the users have access to other members.

To limit journal dimension member lists

1. Add the property EnableJRN to the dimension for which you want to limit journal access. See
Adding properties to dimensions.

2. Open the dimension sheet for the dimension whose members you want to limit. See About
maintaining dimension elements.

3. For those base-level members for which you want to allow users to post journal entries, type a
"Y" in the EnableJRN column.

4. Repeat steps 1-3 for any other dimensions whose members you want to limit. Leave each
member sheet open.

5. Process the dimension. See Validating and processing members.

Locking data for journal input only
You can set up Work Status so that owners or managers can lock data from users making any changes
except journal changes. This is useful if you want to separate the BPC for Excel input schedules used to
send data from your Review & Analysis phase, where all data is sent using Journal changes.

To lock data for Journal input, take the following steps:

1. Set up a work status code, such as ‘Journal Only’. (See Changing or adding status codes
section for detailed information on setting up a new status code.)

For example, you can set up a code named ‘Journal Only’ in which the Entity owner can set status
from Unlocked to Submitted and set it back to Unlocked if they want to. The Manager can change
from Submitted to Journal Only, which locks the data from changes by BPC for Excel input
schedules or data manager data loads, but allow changes by Journals. The manager can then set
status to Approved, which locks changes from any source, including Journals.

For more information, see Managing Work States.

2. As Owners or Managers set work status, entities can be set for Journal input only.

Setting up Journals Application parameters
You use application parameters to define conditions for applications. There are five application parameters
related to journals behavior for users. These are:

Application
parameter

Description

JRN_BALANCE Defines whether journals are required to be balanced.

"1" - (or "Y") Journals must be balanced when they are posted. Journal
users can save an unbalanced journal but may not post it.

"0" - (or "N") Journals can be balanced or unbalanced. Journal users can
change this behavior. If they select Balanced, it works the same as option
1.

"2" - Journals users are prompted to save the journal as balanced, but are
not required to do so.

JRN_MAXCOUNT Maximum number of journal entries returned from a query in the Journal
Manager. This parameter is useful if you have a large number of Journal
Entries and want to protect a user from launching a very large query that

SAP Library: BPC Administration Guide

January 30, 2009 Page 160 of 217

returns many journals and takes a long time.

JRN_POST_OVERWRITE Sets whether the system keeps the same Journal ID when saving journals
that were previously set to Posted status, but changed to Unposted status.
"Y" indicates that the Journal ID is preserved, while "N" indicated that a
new ID is created when the unposted journal is saved.

JRN_DESC_MODE Determines whether member IDs or Descriptions are shown in the Journal
template. If "Y", member descriptions are shown as row and column
headings, if "N," member IDs are shown as row and column headings.

To set up Journal application Parameters

1. Open BPC Web and navigate to the application for which you are defining variables.

2. Click the Administration link.

3. Click the Application parameters link.

If either Journal parameter is not listed, in the New row, enter the name of the variable. Variable
names are case-sensitive.

4. In the value field enter numeric or text values as described in the above table.

5. Click the Update button.

Defining journal validation rules
You can set up journal validation rules to prevent users from saving invalid journal entries. After journal
validation rules are defined, users who try to submit a journal entry to an invalid member set will receive
an error, and will not be able to save the entry until they enter valid members.

To define journal validation rules, you must do the following tasks:

• Define validation property names for a dimension, and assign property values to the members
you want to validate.

• Define the previous dimension as your driver dimension, and associate it with another
dimension, the driven dimension.

• Determine which driven dimension members are permitted for associated driver dimension
property values.

To define journal validation rules

1. From the Admin Console, define a validation property for each dimension you want to use to
identify as your driver dimension. For example, if you want Account as your driver dimension,
you can create a new property for it called Validation. See Adding properties to dimensions.

2. Assign property values on the members you want the system to validate against. For example,
under the property Validation, you can set up property values called ICRule, and NOIC. The
following table shows how a sample member sheet would look for the Account dimension. There
are four account members using the ICRule value and two using NOIC.

ID Description Validation

IICSales Inter-company sales ICRule

IICCost Inter-company cost of sales ICRule

IICAccRec Inter-company Accounts Receivable ICRule

IICAccPay Inter-company Account Payable ICRule

3rd party 3rd party product NOIC

AccRec Accounts Receivable NOIC

SAP Library: BPC Administration Guide

January 30, 2009 Page 161 of 217

3. Close the Admin Console, and open the BPC Administration action pane. (From the launch
page, select BPC Administration.)

4. Under the Browser Admin Tasks category, select Journal Validation Rules, then click the
Dimension dependencies link.

5. From the Driver dimension name field, select the dimension for which you assigned the
validation property, and then a driven dimension to associate it with. For example, you might
want to associate Account with Intco, and Account with Entity.

6. You then identify the validation property you defined for the driver dimension.

7. Repeat steps 5 and 6 for each dimension dependency you want to define, then click Update.

8. Select Member Filters.

9. In the Member Filter page, enter a driver dimension property value for which you want to define
a rule in the Driver property value field.

10. In the Driven dimension name field, select a driven dimension to associate with the property
value.

11. In the Driven dimension filtered values field, specify which members of the driven dimension
to include (or exclude). You can click the adjacent button to help define the filter. Select one or
more members, then select Finish, or select the <> radio button to prevent users from posting
to the member(s) selected.

When you match a driven dimension filtered member list with the driver dimension property
value, during validation, the system will look for a driver dimension member that has the
validation property value assigned to it (ICRule, for example), and the driven dimension
associated with it (IntCo, for example). For example, if you set up <>Non_InterCo with the
Intco driven dimension and ICRule property value, and a user tries to save a journal entry with
Account member ICCost, it cannot be posted to IntCo dimension member Non_InterCo.

12. Click Update.

SAP Library: BPC Administration Guide

January 30, 2009 Page 162 of 217

Managing Insight

Managing Insight involves enabling application sets to use Insight, and maintaining system information
related to Insight.

Setting up Insight
Before you can use Insight, it must be set up. These steps are required for each application set after a
new version of BPC has been installed, or if you have added a new application set for which you want to
enable Insight.

To set up Insight

1. From the Admin console, enable Insight on the active application set. To enable Insight, do the
following:

a. Start the Admin console and log on to the desired application set.
b. Select Insight from the left navigation pane.
c. Select Enable Insight from the Insight action pane. (If Disable Insight is displayed on

the action pane, the application set is already enabled for Insight.)
d. Click OK when the Successfully Finished message is displayed. (This may take a few

moments, depending on the size of the application set.)

2. From Insight Administration, synchronize the Insight server with the BPC server. See
Synchronizing data.

3. You can define KPIs for users, or users can define KPIs themselves. See Adding KPIs.

Setting up the RootCauseEvent table
Root cause events are those which exist outside of the BPC application, yet might have an effect on the
performance monitored by an individual KPI. For example, if you had a KPI called “Sales for Florida,
December, 2004,” the root cause events could include:

• Florida rainfall 3.2 inches, December 12, 2004

• Florida temperature 83 degrees, December 12, 2004

• Florida humidity 86 percent, December 12, 2004

Before root causes are displayed in a Variance view for a KPI, the root causes must be loaded from an
external source into Insight. This is done using Data Manager.

To load the data using Data Manager, you import a text file into a SQL table using a sample package,
called LoadRootCause DTS. After modifying and running the LoadRootCause.dts package, you import
the data into Insight by synchronizing and Insight. See Synchronizing data.

You set up one root cause table per application set. The root cause table must contain at least 12 months
of data, prior to the current month. Insight needs 12 months of data because it scans all the previous data
to find a linear correlation between all KPIs for the current time period. See About the RootCause/KPI
association.

The RootCauseEvent table has the following information:

Field Description Example

EventID (Required) A unique number for the event. 00001

EventName (Required) The name of the event. Weather

MeasureType (Required) The type, or category, of event. Rainfall

Measure (Required) The data value. 3.2

EventTime (Required) The time of the event, in the format
mm/dd/yyyy.

12/12/2004

SAP Library: BPC Administration Guide

January 30, 2009 Page 163 of 217

Field Description Example

EventAttribute 1-n One field is required for each dimension in the application
set (except for the Time dimension). For example, if you
have three dimensions, Entity, Product, and DataSrc, you
must create three fields, one field for each dimension. The
data values for these fields can be empty.

Entity, DataSrc,
Product, etc.

MeasureUnit The unit of measure related to the measure value. This is
for display purposes only.

Inches

AggregateFunction (Required) The method of aggregation used to calculate
the root cause value. For example, if SUM, the daily values
in the root cause table are added together in the same
aggregation as used by the KPI. For example, if the KPI
aggregates monthly, the root cause events are aggregated
monthly.

SUM (default) or
AVG

To set up a RootCauseEvent table

1. Create a text file with the events for an application set.

2. From Data Manager, add the sample package LoadRootCause.

3. Modify and run the package.

4. Synchronize Insight.

5. Perform this procedure for each application set for which you want to correlate root causes and
KPIs.

About the root cause/KPI association
In order for Insight to associate an event in the RootCauseEvent table with a KPI, the event must conform
to the following rules:

• The EventTime value must fall within the previous time period specification of the KPI, as defined
by the SampleSize.

• Each Dimension value of the event must be empty, a child of the KPI dimension constraint value,
or equal to the KPI dimension constraint value. If, for example, a KPI has dimension constraints:

ACCOUNT.[NetIncome], DATASRC.[TotWithAlloc], DEPARTMENT.[SalesMkt],
ENTITY.[NorthAmerica]

…And the event dimension constraints for the event dimensions are:

ACCOUNT.[PreTaxIncome], DATASRC.[TotWithAlloc],(no DEPARTMENT
value),ENTITY.[Florida]

...All the other event dimensions that are not in the KPI are ignored, and this event becomes
associated with the KPI.

• Next, Insight calculates the correlation between the associated event and the KPI by doing the
following:

• Aggregating the associated event Measure values by Time Period

• Getting previous Time periods (SampleSize) actual data for the KPI

• Calculating the correlation using Linear Regression (LR)

• Finally, if the correlation coefficient >= the threshold, get the top three events (based on
MeasureType) according to the correlation and performance band of the KPI variance. If the
variance > 0 and the LR slope > 0 (or the variance < 0 and the LR slope < 0), get the top three
events with maximum Measure value. If the variance < 0 and the LR slope > 0 (or the variance >
0 and the LR slope < 0), get the top three events with minimum Measure value.

SAP Library: BPC Administration Guide

January 30, 2009 Page 164 of 217

Managing users
From the User Management tab, you can view the BPC users that have access to the active application
and application set. You can also manage user information, including KPIs.

View user information

From the User Management tab, you can view the user name and the groups the user belongs to, and
the user's email address. If there is no email address specified, you can enter one.

To view user information

1. Start Insight, and click Insight Admin.

2. From the User Manager tab, select View User Information.

3. Enter an email address, if desired, then click Update.

Adding KPIs

Each BPC user has their own custom view of Insight, so each user must have their own set of KPIs. This
means that each user can only see the KPIs that have been specifically defined for (or by) them.

When you define a KPI, you define performance bands to represent different variances, and dimensional
constraints. The following table describes the performance bands. Dimensional constraints are the
dimension members (in addition to the account) to which the KPI applies.

Note: The following performance band specifications are for income accounts. To create a similar
performance band for expense accounts, simply reverse the signs (+ -).

Performance
bands

Default
value

Description

Weak (,-0.2) The current value is greater than 20% below the value for the
previous time period. Weak performers are shown in red in the
Dashboard and Radar views.

Under (-0.2,-0.05) The current value is between 20% and 5% below the value for
the previous time period. Underperformers are shown in red in
the Dashboard and Radar views.

Normal (-0.05,0.05) The current value is between 5% below and 5% above the
value for the previous time period. Values that are in the
normal band do not have any formatting in the Dashboard and
Radar views.

Over (0.05,0.2) The current value is between 5% and 20% above the value for
the previous time period. Overperformers are shown in blue in
the Dashboard and Radar views.

Strong (0.2,) The current value is greater than 20% above the value for the
previous time period. Strong performers are shown in blue in
the Dashboard and Radar views.

To add a KPI

1. From BPC Web, start Insight, then select Maintain KPIs from the action pane.

2. Select Add new KPI from the action pane.

3. In the Step 1 – Define KPI tab, do the following:

a. From the Application field, select an application. The subsequent field choices reflect the
specified application.

b. In the Account field, enter the account for which you want to define the KPI. Click the '...'
link to select an account from a list of accounts in the application.

c. In the KPI Name field, accept the default value (the selected account) or enter a meaningful
name for the KPI.

SAP Library: BPC Administration Guide

January 30, 2009 Page 165 of 217

d. In the Dimensional Constraints fields, accept the default members (which are the top-
most members in the hierarchy to which you have access), or enter new ones. To select new
members, select a member from the drop-down list, or click Browse to select one from a
window that displays the hierarchy. RPTCURRENCY, INTCO, DATASRC and ENTITY.

e. In the Correlation Context field, specify how you want to calculate root cause and
prediction values for this KPI: Base values or Variance.

4. Select the Step 2 – Define Basis tab, and do the following:

a. In the Performance Band fields, accept the default performance bands, or adjust them.
See the table above for the default values. Notice that you only need to modify one end of a
band. The adjacent band’s range limit that touches the current one is adjusted accordingly.
Also notice that it is not necessary to modify the range of the ‘Normal’ band directly as both
ranges are determined by modifying the adjacent bands.

b. In the Algorithms fields, choose the default algorithm from the list, and select the other
 algorithms you would like to use to calculate the prediction. Available algorithms are:

• Linearregression (default)

• Nonlinearregression

• Multiline regression

• Peicewiseline regression

5. Select the Step 3 – Select Options tab and do the following:

a. Under KPI Management Options, select to get notified of a favorable or unfavorable
variance, and ability to modify or delete the KPI definitions.

b. Under Default Chart Options, select how you want to view KPI values in the dashboard.
From the Chart Type field: Columns (default), Line Chart or Pie Chart.

c. Select the Include YTD data check box if the dashboard should display year-to-date values.
d. In the Scales field, select how you want to scale your dashboard data: 1 - 100,000.
e. In the Decimal field, select how many values you want to appear to the right of the decimal

point desired when viewing values in the Dashboard.

6. Select the green OK button, when you have completed all modifications.

Importing KPIs

If you want to add several KPIs at once, you can create a text file that contains all the KPI data, and then
import it. The following table describes the fields that you define per line, separated by the a delimiter
(pipe | or caret ^). You include one line item for each KPI you want to define.

Field Description

User Name (Required) The name of the user for which you are defining the KPI. The syntax
is <domain name (if required)>\<user name>.

An example of a domain and user name is mydomain\hjacobs.

Application (Required) The name of the application for which you are defining the KPI.

An example of an application is Finance.

KPI Name (Required) A meaningful name for the KPI. The name is displayed in the first
column of the Dashboard view.

An example KPI name is Total Revenue.

KPI Fact (Required) The ID of the account for which you want to define the KPI.

An example of a KPI fact is ACCOUNT.[TOTREV].

Constraint (Optional) The dimension members for which you want to define the KPI. If left
blank, the top-most members in the hierarchy to which you have access are
used. Otherwise, enter the desired dimension members.

An example of a constraint is ENTITY.[MCG1],PRODUCT.[TOP].

Notified (Required) Y (default) if you want to be notified by email when the KPI is within
the underperformer or weak range, or N if you do not want an email alert.

SAP Library: BPC Administration Guide

January 30, 2009 Page 166 of 217

Field Description

Normal Performer
Band

(Optional) The value that defines the normal performer range. If left blank, the
default is [-0.05,0.05].

Strong Performer
Band

(Optional) The value that defines the strong performer range. If left blank, the
default is [0.2,).

Over Performer
Band

(Optional) The value that defines the overperformer range. If left blank, the
default is (0.05,0.2).

Under Performer
Band

(Optional) The value that defines the underperformer range. If left blank, the
default is (-0.2,-0.05).

Weak Performer
Band

(Optional) The value that defines the weak performer range. If left blank, the
default is (,-0.2].

Note: The default performance band specifications shown above are for income account KPIs. To create
a similar performance band for expense accounts, simply reverse the signs (+ -).

The following figure shows a sample KPI text file:

If you are moving KPIs from one server to another, you can import the Insight configuration file to the
new server. See Importing system configuration files.

To import KPIs

1. Start a text editor, such as Notepad.

2. Type the desired KPI data, as described in the table above.

3. Save the file to the web server.

4. Start Insight Administration, and select Import User KPIs from the User Management tab.

5. Enter the path to the file you saved in step 3.

6. Enter a pipe (|) or a caret (^).

7. Select Import.

Exporting KPIs

After defining one or more KPIs, you can export them to a file, so you can import those KPIs to other
application sets.

After you perform the export, all KPIs in the active application set are exported to a text file. You can take
an exported KPI file and import it to another application set using Insight's import user KPI feature. See
Importing KPIs.

To export KPIs

1. Start Insight Administration, and select Export User KPIs from the User Management tab.

2. In the Export file name field, enter the desired file name. The file will be saved to a folder called
Insight Files under the applicable application set. (You can enter any file extension, for
example, .TXT, or you can omit the file extension. The file will be saved under the exact name
you specify.)

3. Select a pipe (|) or a caret (^) to use as the delimiter in the exported file.

4. Click Export.

Editing KPIs

After you add KPIs by either adding them individually or importing them, you can edit them.

To edit a KPI

1. Start Insight, and click Insight Admin.

SAP Library: BPC Administration Guide

January 30, 2009 Page 167 of 217

2. From the User Management tab, select Manage & Add KPIs, then click Update.

3. Select Edit next to the KPI you want to edit.

4. Edit the fields, as desired. For descriptions of each field, see Adding KPIs.

The dashboard is updated the next time the KPI is recalculated, which may be overnight or the next time
the Insight data is synchronized.

Deleting KPIs

You can delete KPIs.

To delete a KPI

1. Start Insight, and click Insight Admin.

2. From the User Management tab, select Manage & Add KPIs.

3. Select Delete next to the KPI you want to delete.

4. Click Update.

Importing/Exporting configurations
You can import or export system configuration files between application sets. System configuration files
contain KPIs and default Insight settings.

Importing system configuration files

You can import an application set's system configuration files to another application set on the same
server, or to a different server. Moving configuration files between servers is useful when you are moving
files from, for example, a development server to a production server. When importing to a different
server, the application set names and the user names must be identical.

To import a system configuration file

1. Start BPC Administration, and click Manage Insight from the Administration Configuration
action pane.

2. Select Import/Export Configuration, then select Import.

3. Select Import from files to get the files from the specified location, or select Import from
another appset, then select the desired application set.

4. Click the green check mark in the action pane.

Exporting system configuration files

You can export an application set's system configuration file to another application set.

To export a system configuration file

1. Start BPC Administration, and click Manage Insight from the Administration Configuration
action pane.

2. Select Import/Export Configuration, then select Export.

3. Select Export to files to get the files from the specified location, or select Export to another
appset, then select the desired application set.

4. Click the green check mark in the action pane.

Setting system configurations
Using the System Configuration options, you can specify the current time period, set up your email
server, synchronize your BPC and Insight data, and set up KPI variance categories for an application set.

Setting the current time period

The current time period is the period in which variances are calculated. It also determines the default view
of the Dashboard. Only Administrators can change the current time period.

SAP Library: BPC Administration Guide

January 30, 2009 Page 168 of 217

To set the current time period

1. Start BPC Administration, and click Manage Insight from the Administration Configuration
action pane.

2. Select Configure System, then select Current Time Period.

3. For each application in the application set, select a default time period from the drop-down list.

Note: Click Browse to select a time period from a window that displays the available time periods.

4. Click Apply.

Viewing email server information

You can view the name of the email server configured for Insight. The email server is specified in the
SMTPSERVER field on the System Parameters page in BPC Web. See Setting System Parameters.

To view email server information

1. Start BPC Administration, and click Manage Insight from the Administration Configuration
action pane.

2. Select Configure System, then select Email Server.

3. View the information, then click Cancel to go back to the previous page.

Synchronizing data

The first time you use Insight on an application set, data must be synchronized between the BPC and
Insight databases. You should also synchronize the data at regular intervals to ensure Insight always has
updated data. The synchronization process does the following:

• Synchronizes the Insight application with data from the BPC application.

• Recalculate correlations for each KPI to determine relevant accounts.

• Refreshes the cache of KPI calculations such as root cause events, variance, and predictions.

You can run a synchronization at any time, or set up a data synchronization schedule.

To synchronize data

1. Start BPC Administration, and click Manage Insight from the Administration Configuration
action pane.

2. Select Configure System, then select Synchronize.

3. Select Schedule Synchronization to set up a schedule. Select Daily, Weekly, or Monthly,
then specify a time of day by selecting the time from the drop-down.

4. Enter your user name and password (twice).

5. Do one or both of the following:

• Click Apply to enable the schedule.

• Click Synchronize Now to start the synchronization process immediately.

Defining KPI variance categories

Variances are calculated by taking the actual amounts and comparing them to the budgeted amount. You
can define the actual and budget categories that you want to use for these comparisons.

To define a KPI variance category

1. Start BPC Administration, and click Manage Insight from the Administration Configuration
action pane.

2. Select Configure System, then select Variance Category.

3. From the Category 1 field, select the category you want to use for one of the values.

SAP Library: BPC Administration Guide

January 30, 2009 Page 169 of 217

4. From the Category 2 field, select the category you want to use to compare against the other
value.

5. Click Apply.

Setting the measures type

You can specify a default measures type and an aggregated measures type for each Insight application.
The measures type is used to calculate KPI variance.

By default, the basic measure type is set to periodic, and the aggregate measures type is set to YTD.

To set the measures type

1. Start BPC Administration, and click Manage Insight from the Administration Configuration
action pane.

2. Select Configure System, then select Measures Type.

3. For each Insight application, select a default measures type and an aggregate measures type.

Configuring Prediction Algorithms

In each application, you can set the parameters for the prediction algorithms to be used in determining
the relationships between your KPIs and the underlying business drivers.

Note: The development and implementation of the algorithms is outside the scope of this topic. For more
information about the general concepts underlying each algorithm type (linear, non-linear, multi-
linear, and piece-wise linear), see the BPC Web User’s Guide.

To set prediction algorithm parameters

1. Start BPC Administration, and click Manage Insight from the Administration Configuration
action pane.

2. Select Configure System, then select Measures Type.

3. For each Insight application, set the following parameters:

Parameter Default
value

Description

Seasonal period 12 BPC can be configured to screen out the effects that seasonal
variations might have on your data. For instance, in the case of
a retail store, there is often a relationship between the number
of employees and sales. BPC can be configured so that the
prediction algorithm compensates for the effect a holiday
shopping season would normally have on the sales volume, and
allow you to gain an understanding of the true employees-to-
sales relationship. The number of periods define the
seasonality. The period (as a unit) is the base level of your
Time dimension member. In many cases, the period will be a
month; the default setting of 12 would tell BPC that it should
create a seasonal adjustment for each month (12 months in 1
year). In a weekly Time dimension, you set 52 periods, with
the period consisting of a week.

Prediction time lag 0 The number of periods by which you'd like to offset one
variable which (may be) affected by another variable. For
instance, you may wish to determine the effect that a quality
improvement program has on customer satisfaction. In this
case, you might need to adjust for the expected lag time (in the
number of time periods) between the time you begin your
quality program and the time it should take for the effects of
that program to affect customer satisfaction.

SAP Library: BPC Administration Guide

January 30, 2009 Page 170 of 217

Parameter Default
value

Description

Calculation periods
used in predictions
in the application

24 The total number of data periods included in the prediction
analysis. For example, given the default setting and a time
period of months, the algorithm would use the previous 24
months of data.

Minimum sample
size

12 This is the minimum sample size (in terms of time periods) for
your data. If any of the variables included in your sample sets
do not meet this criterion, the analysis will not be performed.

Viewing services and logs
Insight uses several services to manage its components. The Services & Logs tab shows the status of each
Insight service, and allows you to view a log file that displays detail information about a specified service.

Viewing services

The page displays all the Insight services, and their IP addresses, ports, and statuses.

To view the services

1. Start Insight, and click Insight Admin.

2. From the Service & Log tab, select View Services.

Viewing service logs

You can use the View Service Logs page for troubleshooting your Insight services. The page allows you to
select a log file, service, and severity.

To view a service log

1. Start Insight, and click Insight Admin.

2. From the Service & Log tab, select View Services Log.

SAP Library: BPC Administration Guide

January 30, 2009 Page 171 of 217

Maintaining a BPC server

This chapter presents tasks for maintaining a BPC Server.

 BPC Server Manager
BPC Server Manager helps you maintain your BPC server by providing you with status information on
server, diagnostics on the status of the BPC installation as well as information on the application sets in
BPC. These tools will come in handy when you need to access the overall status of the server.

When you open the Server Manager you are presented with the server information screen (example
below).

To access BPC Server Manager, select Start > Programs > SAP > Server Manager.

Use the Help menu to get more information about this utility.

Importing Non- BPC reports
You can import reports from other systems into BPC. Using BPC advanced mapping feature you have the
ability to control the viewing of these reports with the current view. BPC security will also be applied to
these reports.

The files to be imported must be arranged in a package. The package must consist of:

• An index file, this contains the instructions for importing the reports. It is read at run time
by BPC Web

• Files to be imported

The index file and package folder must be placed in the following directory on the BPC server.
C:/Everest/Webfolders/[AppSet]/[application]/REPORTIMPORT.

The package folder and the index file must both have the same name.

Mapping to BPC

BPC maps the reports to be imported to BPC dimensions based on the report's file name. Depending on
the format of the file name you can have to either rename the files manually or use the TRANS feature.
The TRANS feature is described below. You rename the file to a name BPC can understand. For example, a
report from an external system maps to the Entity and Time dimensions in BPC and you want this report
to be viewed by Entity and/or Time. You need to rename the file name for the Entity member and time
member. For example, WORLDWIDE1,2001.JAN.HTML. With the file name in this format BPC is able to
import the report and link it to the Entity and Time dimension.

In order for a non-BPC report to be controlled by the current view, you must map the reports to the
proper dimensions in BPC . You do this in the index file. The index file is made up of sections, each section
identifies a different set of instructions for BPC . The index file is described below.

The Index File

BPC gets its instructions from the index file based on the sections in the file. The sections are OPTION,
MAP, FIXED, and TRANS, and they must be present in the index in this order.) There must be one blank
line between sections but not more than one. The section headings must be in all CAPs and in brackets [].

OPTION - contains user definable options. They are:

Option Description

Delimiter Specifies the delimiter used in the file name. This field can be blank (no delimiter)

Usetrans Specifies whether to translate member names (i.e. external to internal). accepts YES
or NO value.

Useinitdir Reserved for future use.

Initdir Reserved for future use.

Report The name of the report - any name you want to use. Cannot contain any special
characters

SAP Library: BPC Administration Guide

January 30, 2009 Page 172 of 217

Option Description

Section The name of the section in the book. Cannot contain any special characters

Book The name of the book. Cannot contain any special characters

Report, Section and Book, the same as for Books published from BPC. BPC Web reads the Book
 parameter as the name of the book. When you publish to a Web Publication you choose the book name.

MAP - specifies the name of the dimension(s) that are represented in the file name. Remember that the
file name is made up of member names. (Entity and Time from the example above) If there is no delimiter
in the file name you can use the Start Point, Length feature. For example the file name for a report is
SalesUS2000.jan. You can specify the mapping for this as follows.

[MAP]
ENTITY 1,7
TIME 8,7

The first number is the start point of the member name and the second number is the length of the name.

FIXED - any dimension specified here is fixed and cannot be changed by changing the current view

TRANS - used to translate member names from an external name to an internal name.

The dimension being translated must be entered in CAPs, the TRANS statement must be in brackets []
(ex. [TRANS:TIME]).

You can have more than one TRANS statement.

For example: The reports from the external system have similar names to BPC dimensions. You can
specify a mapping that will translate the external name an internal name.

Here is an example of a translation:

[TRANS:TIME]

20010101=2001.JAN.W1
0010102=2001.JAN.W2
0010103=2001.JAN.W3
0010104=2001.JAN.W4
0010201=2001.FEB.W1

SAP Library: BPC Administration Guide

January 30, 2009 Page 173 of 217

Here is an example of an index file:

[OPTIONS]
DELIMITER=
USETRANS=no
USEINITDIR=no
INITDIR=
REPORT=Growth Analysis
SECTION=SECTION1
BOOK= SAP Book 3

[MAP]
PRODUCT
TIME

[FIXED]
CATEGORY=BUDGET

[TRANS:TIME]
20010100=2001.JAN
20010200=2001.FEB
20010300=2001.MAR
20010400=2001.APR
20010500=2001.MAY

Creating a package

1. Create a folder named for the package in the
C:/Everest/Webfolders/[AppSet]/[application]/REPORTIMPORT directory.

2. Copy the reports to be published into this folder

3. Rename the report files if necessary.

4. Create an Index file. (This file should reside below the REPORTIMPORT folder but outside the
package folder.

Running a package

1. In the Company Desktop of BPC Web click the Administration link, and then click the Bulk
Collaboration link.

2. Click on the package you want to run.

3. Click the Process This Package link.

Editing default messages
As the administrator, you have the ability to modify the default messages that appear when Web
publications on the desktop cannot be displayed for various reasons. The messages are contained in .htm
files in the SystemLibrary directory for the application set.

The following table describes the files you can modify.

Filename When Used Sample Message

NoAccess_.htm When a report cannot be displayed
because the user does not have access
to the necessary combination of category
and entity.

You do not have access to this report.

NoTarget_.htm When the collaboration file specified for a
Web publication is missing.

Target is missing.

NoReport_.htm When the specified report is not available
for the current view.

No report is available.

NoBook_.htm When the specified book is not available
for the current view.

No book is available.

SAP Library: BPC Administration Guide

January 30, 2009 Page 174 of 217

Filename When Used Sample Message

Default_.htm Default text that appears in an new Web
publication object.

Click on Edit button to select information
to display here and to change the
caption.

Database specifications
The following specifications relate to Microsoft® SQL Server™ 2000 Analysis Services (referred to in this
document as MS Analysis Services).

MS Analysis Services provides the online analytical processing (OLAP) and data mining capability behind
BPC.

Item Specification BPC notes

Dimensions in a database 65,535 maximum, regardless
of the number of cubes or
whether dimensions are shared
or private

There is no limit to the number of
dimensions defined in an AppSet but
 an application cannot have more
than 20 dimensions

Levels in a database 65,535 maximum

Cubes in a virtual cube 64 maximum No explicit support for virtual cubes

Measures in a cube 1,024 maximum BPC uses one input measure, and
uses calculated measures for
frequencies.

Measures in a virtual cube 2,048 maximum Not applicable.

Dimensions in a cube 128 maximum, including the
Measures dimension

20 is the recommended maximum
number of dimensions for BPC

Levels in a cube 256 maximum

Levels in a dimension 64 maximum The number of levels you can have in
BPC is dependent on the number of
properties in the dimension.

Members in a virtual
dimension created in SQL
Server version 7.0 OLAP
Services

759 maximum No explicit support for virtual
dimension. Virtual dimensions can be
manually created and used in
applications.

Members in a parent 64,000 maximum 5,000 members per dimension
supported for version 2000

Calculated members (server
defined) in a cube

65,535 maximum

Calculated members in a
parent measure in session
context

31,743 maximum

Calculated members in a
parent measure in query
context

31,743 maximum

Calculated members in a 759 maximum

SAP Library: BPC Administration Guide

January 30, 2009 Page 175 of 217

Item Specification BPC notes

parent dimension member in
session context

Calculated members in a
parent dimension member in
query context

759 maximum

Aggregations per partition 65,535 maximum

Cells returned by a query 2^31-1 = 2,147,483,647 cells
maximum. Although cubes can
be larger than this limit, a
query that requests more than
2^31-1 cells from a cube will
fail

Record size for source
database table

8060 bytes maximum

Length of object name
(except dimension name)

50 characters maximum when
using Analysis Services
Manager. 24 characters
maximum when using
PivotTable® Service

Max. 50 characters for member
names, and 50 characters for
member descriptions

Length of dimension name 24 characters maximum Max. 20 characters for dimension
names, and 50 characters for
dimension descriptions.

Length of aggregation prefix 50 characters maximum

Note: The term "character" above refers to a UNICODE character.

SAP Library: BPC Administration Guide

January 30, 2009 Page 176 of 217

Web Admin tasks

The Web Admin tasks are available from a browser and allow you to customize the BPC system for your
needs.

Setting application set parameters
Administrators who have "Appset" task security rights can view and change application set parameters.

The parameters that require a value include 'Required' in the description. Parameters that do not require a
value include 'Optional' in the description. If an application set parameter is required, you can leave it
blank to accept the default, but if you delete the parameter, the system may not work correctly. If an
application parameter is optional, you can leave it blank or delete it.

The following table describes the parameters you can set.

Key ID Description

ALLOW_EXTENSIONS Use this parameter to specify whether or not a given file type can be
uploaded to any part of the system. Enter the file extension in the Value
column.

ALLOWEXTENSIONS Use this parameter to prevent certain file types from being displayed in
the Business Planning and Consolidation web pages.

ALLOW_FILE_SIZE You can enter a file size (MB) to allow uploading for files of this size and
smaller.

APPROVALSTATUSMAIL Defines whether owners and managers get email when one or the other
changes a work status. Valid values are Yes (send email) and No (do not
send email). (Optional)

APPROVALSTATUSMSG Allows you to define a custom email message that is sent when a work
status code is changed. The message is applicable to all applications in the
application set. You can customize the message using the following
variables:

• %USER% - name of user who changed the status
• %ED% - Entity dimension
• %EM% - Entity member
• %CD% - Category dimension
• %CM% - Category member
• %TD% - Time dimension
• %TM% - Time member
• %STA% - Work status
• %OWNER% - Entity owner
• %TIME% - time of change

For example, you can enter "This is to inform you that %USER% has
updated the work status for %EM%, %CM%, %TM% on %TIME%". The
message can be up to 255 characters, and there is no need for quotes or
brackets around parameters.

AVAILABLEFLAG Controls whether the system is offline or not. Yes means the system is
online and available for sending data to the database. You can take the
system offline by changing the value to No. (Required)

See Setting application set status

SAP Library: BPC Administration Guide

January 30, 2009 Page 177 of 217

AVAILABLEMSG The message that is displayed to users who try to access an application
that is offline (AVAILABLEFLAG = No). (Required)

For example, the message might be “BPC is temporarily unavailable due to
scheduled maintenance. Please try again later”.

See Setting application set status

AVAILABLEURL The name of the Web page to display to users who try to access an
application that is offline (AVAILABLEFLAG = No). (Required)

For example, the url might be: /osoft/NotAvailable.asp

See Maintaining applications

BPFSTEP_COMPLETE_MSG When a step in a business process flow is identified by the user as
complete, an email is sent to that step’s reviewers (when reviewing and
email notification is enabled for the step). This is the text that is included
in the body of that email message.

This parameter is optional. If this field is blank, the body of the message
(as well as the subject line) will communicate the following:
“<Step_Name> step of <BPF_Name> has been completed by <User>”.

See Adding new business process flows

COMPANY_LOGO Use this parameter to add your corporate logo to the default templates in
BPC for Excel. Enter the file name for the logo image that you want to
display.

The logo image (for example, SAP.JPG) must be stored in the AppSet
directory "[Server Install]\Data\WebFolders\[Appset]". You can use BMP,
GIF, and JPG image types.

DEFAULT_EXTENSIONS Use this parameter to add allowed file types (by extension name). By
default, the system allows you to enter the file types listed below:

XLS, XLT, DOC, DOT, PPT, POT, XML, MHT, MHTML, HTM, HTML, XLSX,
XLSB, ZIP, PDF, PPTX, PPTM, POTX, DOCX, DOCM, DOTX, TDM, PDM, JPG,
PNG, GIF, CSS, MRC

DTSSTATUSCHECK Use this parameter to hide to show the ‘Refresh Status Every’ checkbox in
the Data Manager Status view.

0 Hide the checkbox

1 Show the checkbox

FILESFOLDERDELIMITER When you create web-ready files in Excel, the system creates subfolders
based on the native Excel ‘Save as HTML’ function. Since the naming rule
of the subfolder differs for each Microsoft Office language, this parameter
allows the system to find the subfolder containing the defined delimiter
when selecting web-ready files in BPC Web.

Separate multiple delimiters with a colon; for example, :,:_.

For example, under a folder named ‘Report.htm’, the system creates the
following subfolders:

English: report_files

Chinese: report.files

French: report_fichiers

German: report-Dateien

Italian: report-file

Korean: report.file

SAP Library: BPC Administration Guide

January 30, 2009 Page 178 of 217

JREPORTZOOM This parameter allows you to set the default zoom magnification value on
HTML journal reports. We recommend that you set the value to 75%.
(Optional)

LANDINGPAGEITEM To customize the Getting Started page on BPC Web, please contact your
system administrator.

LIMITOFDIFFERENCE Use this parameter to set the smallest value for processing logic. When
the system processes logic, it ignores data with a smaller value.

LOPTZ_AVAILABLE You can use this parameter to take the system offline during the Lite-
Optimize application process.

1: Change to offline

0: Do not change to offline

MAXLRCOLUMNS The maximum number of columns to display in a live report in BPC Web.
The value includes header and data columns. For example, if you specify a
value of 5, one heading column and four data columns are displayed.

MAXLRROWS The maximum number of rows to display in a live report in BPC Web. The
value includes header and data rows. For example, if you specify a value
of 5, one heading row and four data rows are displayed.

MSNIMPassword The password that the system uses to operate IM alerts in Insight.

MSNIMUser The user name that the system uses to operate IM alerts in Insight.

MULTIBYTE_FORMULA Use this parameter to support dimension formulas with member IDs that
contain double-byte characters, such as those in Japanese, Chinese,
Korean, and Russian.

0 No support for double-byte characters

1 Support for double-byte characters

RETRIEVE_ON_OFFLINE By default, users can perform certain tasks when the application set’s
status is ‘Unavailable’. You can use this parameter to prevent users form
doing this. The tasks include:

Execute logic (script, business rules) from DTS package

Run Export from fact table package

Run Append into fact table package

Add new comments

Save data through DHE (Dynamic Hierarchy Editor)

The options include the following:

0 Do not allow users to perform tasks while offline

1 Allow users to perform tasks while offline

SESSIONTIME You can use this parameter to define the session time in minutes. The
session time appears in ‘Who’s Online’ in BPC Administration. The default
is 3000 minutes; you can enter another number of minutes.

SAP Library: BPC Administration Guide

January 30, 2009 Page 179 of 217

SMTPAUTH The authentication method of the SMTP server. (Required)

0 = Anonymous
1 = Basic
2 = NTLM

This setting does not change the method on the SMTP server, but must
match the type of authentication enabled on it. Failure to set this
appropriately can result in errors from the email server.

SMTPPASSWORD The password for the sending email user name. (Required)

SMTPPORT Port number for your SMTP email server. The default is port 25, the
default SMTP server port number. (Required)

SMTPSERVER The name or TCP/IP address of the SMTP email server the system uses to
send email. (Required)

SMTPUSER The user name from which email from the system originates. (Required)

TEMPLATEVERSION Current version number of the dynamic templates in your application set.
Whenever you add to or change your input schedule or report dynamic
templates, you should increment this version number so that users will
automatically get the new templates downloaded when they log on to this
application set. (Required)

You can also reset the template version from the Admin Console. See
Setting template version.

UPLOADTEMP Temporary folder used to store Content Library documents. (Required)

USE_VARCHAR_FOR_DIM If you have a space restriction problem from SQL and OLAP, you can use
this parameter to determine whether the columns in the Dimension table
are Varchar type or Nvarchar type (one of the data types from the SQL
table column).

0 All columns are created as Nvarchar type

1 All columns are created as Varchar type

If you use a 2-byte character language, such as Korean, Japanese,
Chinese, or Russian, we do not recommend using the Varchar data type.

Note: When you design a Content Library page that contains a BPF object, an application set parameter
starting with B0000000000 (such as B00000000002) is automatically created by the system. This
is an internal number only, and is reserved for future use.

To set application set parameters

1. Start BPC Administration, and from the Administration Configuration action pane, select Set
AppSet parameters.

2. Modify the parameters, as desired, and then click Update.

Setting application parameters
Administrators with Administration - Application task security rights can set application parameters.
Application parameters control the way certain features behave in an application. The application
parameters can be different for each application within an application set.

The following table describes the parameters you can set. If an application parameter is required, you can
leave it blank to accept the default, but if you delete the parameter, the system may not work correctly. If
an application parameter is optional, you can delete it if you want to.

SAP Library: BPC Administration Guide

January 30, 2009 Page 180 of 217

Many of the journal (JRN_) parameters below are used to enable Statutory Consolidation journal
requirements. When these parameters are set, the system generates auto-generating closing values, data
entry locking of opening balance, and automatic reversing of the sign of specific account details.

Key ID Description

CUSTOMFACTTBLINDEX Use this parameter to define a dimension list to create a custom index in
the appropriate database table and accelerate import processing. Enter a
list of dimensions separated by commas; for example, ‘Account, Time,
Entity, Category’. When you use a custom fact table index, we
recommend that when you modify the application, you select the
Reassign SQL Index option.

DimsForFactTblIndex The Fact and Fac2 tables use a clustered index, and the write-back table
uses a composite index. The default fields and order of the fields for the
index is Category, Time, Entity, Account, RptCurrency.

If you need to change the field and order, enter them here.

DTSLOGPAGESIZE Use this parameter to set the number of records that display in the Data
manger Status View. The parameter defaults to 300.

JRN_ACCDETAIL_DIM A special dimension name used to manage the Opening, Closing, and
Reverse Sign codes. This field is used in conjunction with the
JRN_CLOSING_CODE, JRN_OPENING_CODE, and JRN_REVSIGN_CODE
fields.

JRN_BALANCE Controls whether Journals are required to be balanced. 1=Yes, 0= No.
(Optional)

JRN_CLOSING_CODE The member name for the 'closing' code. This member is part of the
dimension defined in the JRN_ACCDETAIL_DIM field.

JRN_DESC_MODE Accept the default N when you want member IDs to be displayed in the
application's journal template. The default also provides optimal
readability.

Use the value Y to display the description in the journal template.

JRN_IS_STAT_APP If the application is used for statutory consolidation, set this field to Y to
enable the subsequent journal fields. Set to N to disable the subsequent
fields.

JRN_MAXCOUNT Maximum number of journal entries returned from a query in the Journal
Manager. This parameter is useful if you have a large number of Journal
Entries and want to protect a user from launching a very long query.
(Optional)

JRN_OPENING_CODE The member name for the 'opening' code. This member is part of the
dimension defined in the JRN_ACCDETAIL_DIM field.

JRN_POST_OVERWRITE Controls whether the system keeps the same Journal ID when saving
journals that were previously set to Posted status, but changed to
Unposted status. (Optional)

Y indicates that the Journal ID is preserved, while N indicated that a new
ID is created when the unposted journal is saved.

JRN_REOPEN Allows you to define the default for reopening journals: N = do not allow
reopening of journals (default); or Y = allow the reopening of journals.

SAP Library: BPC Administration Guide

January 30, 2009 Page 181 of 217

JRN_REOPEN_PROPERTY A custom Journal module assumes that a property named UB must be
present in account dimension to further filter the Journals to reopen.

The default is Group; when this is set you do not need to modify the
account dimension.

JRN_REVSIGN_CODE The member property name that is used to reverse the sign during
posting and unposting. The property value must be set to Y to use this
feature.

This property is defined for the members defined in the
'JRN_ACCDETAIL_DIM' field.

JRN_VALIDATION_SP Allows you to specify the SQL stored procedure name to be executed
before posting/unposting data. This stored procedure performs custom
validation on the entire RecordSet to be posted/unposted and gives back
go/no-go to the posting engine.

LOCKREPORT
Use this parameter to launch a report when submission validation for a
data region is not '0' in BPC for Excel. Store the template in the
eExcel\Report\ folder.

ORG_OWNERSHIPCUBE The default value is OWNERSHIP.

ORG_INTCO The default value is I_NONE, which should also be a member ID in the
INTCO dimension in the ownership application if using dynamic
hierarchies.

ORG_ACCOUNTOWN The default value is PGROUP.

ORG_ACCOUNTLIST The default value is METHOD,POWN,PCON.

ORG_PARENTPROPERTY This parameter is used with dynamic hierarchy statutory applications
when defining fixed hierarchies. The value must match the value in the
ParentProperty property value of entities in the statutory application's
supporting ownership application.

OWNERSHIP_APP The name of the Ownership application. If this parameter does not exist,
the consolidation procedure will by default search for an application
named OWNERSHIP.

SEC_CACHE_EXPIRE Use this parameter to set the value of the secured profile cache
expiration time. The default value is 24 hours; enter another value to
change the number of hours.

Note: If you change this parameter, you must reset IIS on the
Application Server.

SEND_SGTABLE_COUNT You can use this parameter so that the system can split the
sgData[Application] table when it sends lare amounts of data.

The default value is 2.

Note: After the parameter is added or modified, modify the application
in the Administration console.

SAP Library: BPC Administration Guide

January 30, 2009 Page 182 of 217

SIGNED_DATA_FORMAT When you send data from the client side, the system inserts data into
the Facttbl and the SignedData column. You can use this parameter to
set the decimal length of precision and of scale for these elements.

The default value is 25 for precision and 10 for scale (25,10). For
example, if you send a 10 value from BPC for Excel, 10.0000000000 is
inserted into the fact table.

TOPDOWN Use this parameter to set work status approval based on whether or not
sub-work status is approved.

No - bottom up approval; work status can be approved only if
all sub-work status is approved.

Yes - top down approval; work status can be approved whether
the sub-work status is approved or not. (Required)

Note: When you change this parameter, all existing work status
approval information is removed.

VALIDATE_MBR_LOGIC Use this parameter to validate members when the system processes
logic.

1 The system filters records that would otherwise post to a
parent member, to a member that no longer exists, or to a
member-calculated dimension formula.

0 The system bypasses this validation.

WORKSTATUSVALIDATE Use this parameter to determine if the system validates submitted
values for work status purposes.

Yes - validate

No – do not validate

Note: To use work status validation, you must set up a validation
account in the Administration console, See Changing work status
settings for applications.

YTDINPUT This parameter controls whether data is input in year-to-date format.
Valid options are 1, which means ytd format; or 0, which means periodic
format. (Optional)

YTDInputTimeHir This parameter designates the time hierarchy that will be used by a YTD
storage application. H1 is the default.

YTD_NECJ_RETRIEVE You can choose a retrieval query type to improve the performance of
data retrieval when retrieving YTD measures on Periodic applications.
EVDRE, EVGET, EVGTS, EVSND, EVINP functions You can use this
parameter is useful when the below condition are met:

YTD / QTD measures data is retrieved on periodic application or
Periodic / QTD measures data is retrieved on YTD application.

The retrieval range is huge, but the portion of the data existing
cells is small.

ColKeyRange or RowKeyRange has over 2 dimensions.

The retrieval range has no members having dimension formula.

Enter one of the following options:

1 To use NonEmptyCrossJoin query

0 Not to use NonEmptyCrossJoin query

SAP Library: BPC Administration Guide

January 30, 2009 Page 183 of 217

To set application parameters

1. Start BPC Administration, and from the Administration Configuration action pane, select Set
Application parameters.

2. Modify the parameters, as desired, and then click Update.

Deleting books
You can delete books that have been published to BPC Web.

To delete a book

1. Start BPC Administration, and from the Administration Configuration action pane, select
Manage Books.

2. Select the check box next to one or more books that you want to delete, then click the Delete
button.

3. Select Yes to confirm the deletion.

Enabling activity auditing
Activity auditing allows you to track the administrative tasks performed in the system. Once activity is
recorded, you can run a report that shows system activity, based on specified criteria. The report shows
when the task was performed, and by whom.

If enabled, BPC tracks activity for the following functional tasks:

• Application set and application setup

• User and team setup

• Member access and task profile setup

• Business Process Flow management

• Adding, deleting, and modifying business process flows

• Saving business process flows to new names

• Data audit maintenance and activation of data audits

• Document type and document sub-type setup

• Activation of activity audit

To enable activity auditing

1. Start BPC Administration, and from the Administration Configuration action pane, select
Manage activity auditing.

2. Select Enable Admin Activity to record all administrative activity, and select Enable user
activity to record all end user activity.

3. Click Update.

Reporting on activity audit
The BPC Reporting Console allows you to report on and track activity audit within BPC.

To report on activity

1. From ‘Getting Started’ mode within BPC Web select Launch BPC reporting console from the
action pane.

2. Select Audit Activity Report from the AppSet Reports section of the action pane.

3. Use the following table to specify the report parameters.

SAP Library: BPC Administration Guide

January 30, 2009 Page 184 of 217

Option Description

Start Date The start date for the query

Start time The start time for the query

End date The end date for the query

End time The end time for the query

AppSet - Report on activity at the application set levelShow activity for

App - Report on activity at the application level

All - Report on activity for all user types

Admin - Report on activity for admin users

Show activity kind

User - Report on activity for general users

All - All activity types

Add – Only add activity

Change - Only activity that involves changes within the system

Delete - Only delete activity

Show activity type

Query - Only query activity

Report from Active - Report on an active BPC system

Set AppSet Parameters - Report on application set information

Set Application Parameters - Report on application information

Modify user - Report on user setup information

Modify team - Report on team setup information

Modify member access profile - Report on member access profile
information

Modify task profile - Report on task profile information

ManageBPF - Report on managing business process flows

Add a new business Process - Report on business process flow information

Delete a Process Flow - Report on deleted business process flows

Modify Process Flow - Report on modifications to business process flows

Save As business Process - Report saving business process flows to new
names

Manage Data Audit - Report audit information

Enable Data Audit - Report on archiving audit information

Manage Document Types - Report on document types

Function task

Manage Document Sub Types - Report on document subtypes

SAP Library: BPC Administration Guide

January 30, 2009 Page 185 of 217

Option Description

Enable Activity Audit - Report on activity audit settings

Source This is the database field value to base your source on. For example, you can
specify a source as User ID. Leave this field blank to report on all possible
values.

Parameter This is the value for the source specified. For example, if you specify a source
as User ID, the parameter could be User1 (where User1 is the BPC Id of the
user). Leave this field blank to report on all possible values.

All - Report on all successful and unsuccessful activity for the function task

Yes - Only report on successful activity for the function task

Succeeded

No - Only report on unsuccessful activity for the function task

Field This is the database field value to specifically track activity on. Leave this field
blank to report on all database fields.

Previous Value This is the previous value for the field specified. Leave this field blank to
report on all previous values for the field specified.

New Value This is the new value for the field specified. Leave this field blank to report on
all new values for the field specified.

Expand All Activity audit reports default to display tasks collapsed. Selecting this check
mark will force the report to appear with all tasks expanded.

4. Click the Check Mark in the action pane to generate the report.

Setting up drill-through
Drill-through lets you view data from an external database or from the Journals database by clicking the
Drill-through button on a cell in a report for which a drill-through has been defined.

You can define a number of Drill-throughs, but you can only use one per dimension.

drill-through is available on any cell that contains an EvGTS, EvGET, or EvINP formula.

Example for external database

You have a report in your BPC application that has a row defined for TotalUntitsSold and perhaps you want
to see this number broken out by customer. As long as you know where that data resides, and it is an OLE
DB database, you can retrieve it from that external database using Drill-through.

Example for journal database

For the same report, you have Commission on a row. You can define a Drill-through to show the Journal
entries that contributed to the final numbers for the Commission member.

To set up a drill-through you need to do the following:

• Create a DrillKey property — This must be present in the dimension for which you are
setting up a drill-through. The value in the DrillKey column can be any alphanumeric
name you would like. You specify the DrillKey value for the member(s) on which you want
to drill-through.

To add properties to your dimension(s) see Assigning Properties to a dimension.

• Create a Database Query — (external database only) to create the query which will
retrieve data from an external database.

• Set up the Drill-through table in BPC Web — You connect Drill-throughs to your
application set using the BPC Web Administration > Edit Drill-through Table task.

SAP Library: BPC Administration Guide

January 30, 2009 Page 186 of 217

Adding drillkey properties to dimensions

Add a DrillKey property to the dimension for which you are creating the Drill Through. After adding the
property to the dimension you must define a DrillKey value, this can be anything you want it to be. The
DrillKey value should be entered for any member that you want to be able to access the Drill Through
information.

To add drillkey properties to dimensions

1. Add a property named DrillKey to the dimension or dimensions for which you want to use drill-
through. See Assigning properties to a dimension.

2. Devise a DrillKey value and assign that value to any member of the dimension for which you
want to use drill-through. See Adding members to a dimension.

Creating drill-through queries

If you are setting up drill-through for an external database, you need to create a drill-through query that
gets the data from the external database.

Note: You do not need to do this if you are creating a Journal drill-through. In that case, a query is
generated for you by BPC and is named Journal.dqy. This query is generated automatically when
you use the Journal Wizard to create a Journal Template.

To create drill-through queries

1. Open the BPC for Excel Module.

2. Select Data > Get External Data > New Database Query.

3. On the Databases tab double click on <New Data source>.

4. Enter a name for the new data source. The name should have some relevance to the database
you are querying.

5. Select the appropriate driver for the type of database to which you are connecting.

6. The screens that follow are going to differ based on the type of database to which you are
connecting. Complete the screens as prompted by the query wizard.

7. On the last screen of the query wizard click on the Save Query button.

8. Name your query and select a destination for the query file. The destination must be the
QueryFiles directory found under <BPC >/Webfolders/[ApplicationSet]/[application])

SAP Library: BPC Administration Guide

January 30, 2009 Page 187 of 217

Varying Dimensions by current view

While defining your query you can set the query filter to vary based on the current view of a dimension.
You can do this on the Query Wizard — Filter Data screen. The syntax to base the dimension on the
current view is '%DimName%', where DimName is the dimension name you are referencing- such as
%Entity%.

Editing the drill through table

You can set up drill-through by editing the drill-through table.

To edit the drill-through table

1. Click on the Edit drill through table link in the BPC Web Administration page.

2. Complete the following fields:

Field Description

DrillKey The value specified in the DrillKey property column for the
dimension member on which you would like to Drill Through.

Title The title appears at the top of the Drill Through page.

FileName The name of your SQL Query file (.dqy). This file must reside
in the QueryFiles directory under the application. For
journals, a Journal.dqy file is automatically built for you. For
all other external databases, you must create your own SQL
Query file.

MaxRows The maximum number of rows to display on one page

UserID and Password A valid userID and Password on the database to which you
are querying.

3. Click the Update button.

Managing document types and subtypes
Document types and subtypes are used to categorize collaboration postings. This is useful if you want to
use the filter option to filter collaboration postings to see only certain types. Subtypes can be managed by
administrators or created by users "on the fly" as they post.

Managing document types

You can use document types to categorize your bulletin board postings. The ApShell application set comes
with several document types by default. You can add to or remove from this list using the Manage
Document Types link on the Administration page.

To manage document types

1. Log on to BPC Web with an administrator ID.

2. Click the Administration link at the top of the page.

3. Click the Manage Document Types link.

4. To add a new document type, type the name in the New text box, click the Next button, then
click the Yes button to confirm the new type.

5. To delete a document type:

a. Select the check box(s) next to the type(s) you want to remove, then click the Next button.
b. On the confirmation screen, select the type the system should change the old type to for

each document type that you are deleting.
c. Click the Yes button to confirm your changes.

SAP Library: BPC Administration Guide

January 30, 2009 Page 188 of 217

Managing document subtypes

Document subtypes help you to further categorize documents when you post them on the collaboration
forum bulletin board. You can define a list of subtypes for your users to choose from or users can type
their own as needed. This procedure explains how to set up a list of subtypes from which users can select
when they post collaboration documents.

To manage document subtypes

1. Log on to BPC Web with and administrator ID.

2. Click the Administration link at the top of the page.

3. Click the Manage Subtypes link.

4. To add a new subtype, enter its name in the New text box, then click the Update button.

5. To delete subtypes, select the check box(s) next to the type(s) you want to delete, then click the
Update button.

Changing the order of document subtypes

While document types always appear in an alphabetical list, document subtypes appear in the order in
which they are input into the system. You can change the order of the subtypes by using the Change
Order mode of the manage subtypes function.

To change the order of document subtypes

1. Log on to BPC Web with and administrator ID.

2. Click the Administration link at the top of the page.

3. Click the Manage Subtypes link.

4. Click the Change Order icon at the top of the Order column.

5. Select a sequence number from the drop-down next to the subtype whose order you want to
change.

Note: The sequence is automatically adjusted so that the new sequence number is swapped with the
subtype that had that number. For example, if the original order is 1-Apr03, 2-Aug03, and 3-
DEC03, and then you change Apr03 to 3 (three) in the sequence, DEC03 gets assigned 1 (one) in
the sequence.

SAP Library: BPC Administration Guide

January 30, 2009 Page 189 of 217

Tips and Troubleshooting

This section describes some tips for using BPC Administration, and some troubleshooting ideas.

Microsoft Office tips and tricks

Excel: Autofilter

Autofilter is very useful in editing Member Sheets. By turning on autofilter, you can filter the members
that are displayed based on any combination of properties. This makes it easy to find and verify
information on the sheet when you are working with large member sheets.

Highlight the top row of the Member Sheet, which contains the column headings (the property names).
Select Tools > Autofilter > On.

Excel Editing Features

Moving or Copying a Range of Cells

1. Highlight the range of cells you want to copy.

2. Point to the border of the selection (place the cursor on the box around the cells -- the cursor will
change from a cross to an arrow).

3. To move the cells, drag the selection to the upper-left cell of the paste area. Microsoft Excel
replaces any existing data in the paste area. (To copy the cells, rather than move them, hold
down CTRL as you drag.)

4. To insert the cells between existing cells, hold down SHIFT (if moving) or SHIFT+CTRL (if
copying) as you drag.

5. To drag the selection to a different sheet, hold down ALT and drag over a sheet tab.

Fill in a Series of Numbers, Dates, or Other Items

This lets you easily create new rows or columns that automatically increment. For example, if just have a
column heading "Jan", and use the fill technique below, you can automatically drag the cell to create Feb-
Dec in the adjacent columns. Excel intelligently increments the cell values based on whether the cells
contain numbers, dates, time, etc.

1. Select the first cell in the range you want to fill, and then enter the starting value for the series.

2. To increment the series by a specified amount, select the next cell in the range and enter the
next item in the series. The difference between the two starting items determines the amount by
which the series is incremented.

3. Select the cell or cells that contain the starting values.

4. Drag the 'fill handle' over the range you want to fill. The fill handle is the little square in the
corner of the box that highlights the selected range.

5. To fill in increasing order, drag down or to the right.

6. To fill in decreasing order, drag up or to the left.

Note: To specify the type of series, use the right mouse button to drag the fill handle over the range,
and then click the appropriate command on the shortcut menu. For example, if the starting value
is the date JAN-2002, click Fill Months for the series FEB-2002, MAR-2002, and so on; or click Fill
Years for the series JAN-2003, JAN-2004, and so on.

Conditional Formatting in Excel

Format / Conditional Formatting can be used to vary the appearance of a cell based on a value or result of
a formula. This can be used in conjunction with properties in BPC, to automatically format rows or
columns in a report based on a property of the members in the row or column.

For example, if the Accounts have a style property, the Style value for each account can be retrieved into
the definition area of a report using the EVPRO function in BPC for Excel. You can give an account a style
value based on whether it is base level input, summary level total, or some total level in between.
Conditional formatting can be used to vary the formatting of a row based on the Style value retrieved. The
format will then automatically be applied to a row based on the account in that row, so that if you change
the account, the format will automatically change.

SAP Library: BPC Administration Guide

January 30, 2009 Page 190 of 217

Publishing Office Documents to BPC Web

You can publish any Microsoft Office document to your BPC Web desktop. To facilitate this publishing you
should set up a Webfolder that points to the application set directory on the server.

To set up a Webfolder in Windows NT:

1. From the desktop, select My Computer.

2. Select Web Folders.

3. Select Add Web Folder.

4. Enter the server name, URL or IP address for your BPC Web server, followed by the application
set directory (the application set name), for example:

http://BPC/Server/GlobalMotors

5. You can now reference this Webfolder location when you publish to the Web from Microsoft Office
products.

Publishing from Microsoft Word

1. Select File > Save as Web Page.

Note: If you do not have this menu option, you can need to click the vv at the bottom of the menu to
display additional commands. To set you menus so they always show all available commands, use
Tools / Customize / Options and un-check "Menus show recently used commands first."

2. Enter the desired filename. The default extension will be .htm.

3. Select Web Folders (icon on left or drop-down at top).

4. Select the Web folder that points to your BPC application set location.

5. Select the appropriate directory. You should select one of the following directories, as these are
the ones that are available from within the BPC Web when you add a Web publication to your
desktop:

AppSetPublications - use this for publications that apply to all applications within the AppSet,
that is, publications that are general to the company.

[application] - use an application directory, for example BUDGET2001, for publications that are
specific to an application.

_private - underneath _private are directories by user. Each of these directories is available only
to that user.

6. Select Save.

Publishing from Microsoft PowerPoint

1. Select File > Save as Web Page.

(Note, if you do not have this menu option, you can need to click the vv at the bottom of the
menu to display additional commands. To set you menus so they always show all available
commands, use Tools / Customize / Options and un-check "Menus show recently used commands
first."

2. Enter the desired filename. The default extension will be .htm.

3. Select Web Folders (icon on left or drop-down at top).

4. Select the Webfolder that points to your BPC application set location.

5. If you want to select special PowerPoint publishing options, such as publishing only selected
slides and other Web options, select Publish..., set the desired options, and then press Publish.

6. To save the entire PowerPoint file to the Web without special options, select the appropriate
directory and select Save. You should select one of the following directories, as these are the
ones that are available from within the BPC Web when you add a Web publication to your
desktop:

AppSetPublications - use this for publications that apply to all applications within the AppSet,
that is, publications that are general to the company.

SAP Library: BPC Administration Guide

January 30, 2009 Page 191 of 217

[application] - use an application directory, for example BUDGET2001, for publications that are
specific to an application.

[site] – use a site directory, for example HQ, for publications that are specific to a site.

_private - underneath _private are directories by user. Each of these directories is available only
to that user.

Setting client options
Client options are available for maintenance purposes. You can perform the following client maintenance
tasks:

• Reset the current view bar

• Clear local application information

• Refresh dimensions

• Updating wizard templates

For information on setting member selector options, see Using the Member Selector.

Resetting the current view bar

You can reset the current view bar so that for each dimension, the top hierarchical level member is
displayed and the list of recently accessed members is cleared.

1. From BPC for Excel, select eTools > Client Options.

2. Click Clear current view bar.

3. When prompted to confirm, click Yes, then click OK.

4. Click Close.

Clearing local application information

You can clear the files associated with an application from your client. After you perform this procedure,
the next time you log on to this BPC for Excel application, you are prompted to download a new AppSet.

To clear local application information

1. From BPC for Excel, select eTools > Client Options.

2. Click Clear Local Application Information.

3. When prompted to confirm, click Yes, then click OK to close and restart BPC for Excel.

Refreshing dimensions

You can refresh the dimension information saved on your client with the dimension and member
information saved on the server.

To refresh your dimensions

1. From BPC for Excel, select eTools > Refresh dimension members.

2. In the Update complete message box, click OK.

Updating wizard templates

You can update the wizard templates saved on your client with the templates saved on the server.

To update your wizard templates

1. From BPC for Excel, select eTools > Client Options.

2. Click the Refresh Wizard Templates button.

3. In the Update complete message box, click OK.

SAP Library: BPC Administration Guide

January 30, 2009 Page 192 of 217

Changing the local BPC folder

By default, the BPC client uses the MS Windows-defined MY FOLDER as the location in which to store
cached files. If this folder is not in an optimal place for this function (on a remote server, for instance),
you may wish to change the location.

To change the local BPC folder

1. From Business Planning and Consolidation for Excel, select eTools > Client Options.

2. Click the Set local folder for BPC button.

3. In the Local Folder message box, enter the path you’d like to use and click OK.

A message box appears, indicating that your changes take effect at your next logon.

Updating application set information
When you log on to an application set whose structure has changed, you are prompted to update your
client information. Structure changes that require updates are changes to dimensions and templates
stored on the server.

You can also initiate this procedure manually during a BPC for Excel session.

Note: We recommend doing this only if instructed to do so by your administrator.

Refreshing dimensions

You can refresh the dimension information saved on your client with the dimension and member
information saved on the server.

To refresh your dimensions

1. From BPC for Excel, select eTools > Refresh dimension members.

2. In the Update complete message box, click OK.

Refreshing templates

You can refresh the wizard templates saved on your client with the templates saved on the server.

To refresh your templates

1. From BPC for Excel, select eTools > Client Options.

2. Click the Refresh Wizard Templates button.

3. In the Update complete message box, click OK.

Troubleshooting
This topic contains solutions to some common problems that might occur when using BPC. While this list is
meant to capture as many issues/problems as possible, it is only updated with each new release of BPC. if
you can not find an answer to your problem please contact BPC Support.

Issue/Problem Solution

Protected VBA code in a
workbook does not work when
taking it offline using Park N Go.

1) Open a workbook that has protected VBA code. (This can be an
existing report or input schedule, or a template that users will
access from the report or input schedule library or wizard in BPC
for Excel.)

2) Open the VBA editor and unprotect the code using the
appropriate password.

3) Using Park N Go, take the workbook offline, then online again.

4) From the workbook, open the VBA editor and delete the hidden
sheets.

5) Protect the VBA code by entering the appropriate password.

You cannot access an You may not have security access to the application or your

SAP Library: BPC Administration Guide

January 30, 2009 Page 193 of 217

Issue/Problem Solution

application. security profile for the application might be incomplete.

Contact your application administrator to request access, or to
check your profile for errors.

Your report and input schedule
libraries do not open. An
Internet Explorer browser opens
instead.

The problem may be with your MS Office installation. Uninstall
and reinstall Excel and Internet Explorer. Make sure the
Webfolder support check box is selected on the reinstall.

You try to send data to the
database and the data
submission fails.

Check to make sure the current view is set to base level members
only. Or check the work status of the entity for which you are
submitting data. The status must be set to Unlocked in order to
submit data to the database.

You cannot view a dimension
member.

You may not have security access to view the dimension member.
Check with your application administrator for more information on
your security rights.

The eCollab Help item is
disabled in the eCollab menu.

In order to view the eCollab Help item, you must connect to a
server through the Connection Wizard when logging on to BPC for
Excel.

If you need help with eCollab, see eCollab Help.

Error message Solution

"Could not load object because it
is not available on this
machine."

The problem might be with your MS Office installation, and you
may need to repair it. You can do this by accessing the Windows
Control Panel, selecting Add/Remove programs, and selecting
your MS office installation. Then select change and choose to
repair your installation when asked by the wizard.

"OLE DB Provider for Analysis
Services. The Operation
requested failed due to Security
problems - resources access
error - access is denied."

You do not have security access to the application set. Contact
your application administrator to request security access.

"Cannot log on to Analysis
Server. It can be due to Network
or Security Problems."

You do not have security access to the application set. Contact
your application administrator to request security access.

"Run Time Error 1004" Your application database needs to be processed. Contact you
application administrator.

SAP Library: BPC Administration Guide

January 30, 2009 Page 194 of 217

Appendix A: Security Management in BPC

Security in BPC has been significantly improved since BPC 4.2x. The new security model allows for more
flexibility and easier maintenance. One of the changes we have implemented is the ability to assign task
profiles and member access profiles to users. The combination of these two profile types defines the way
an individual can access and use different areas of BPC.

When BPC is first installed, by default, only the system administrator can perform administrative tasks.
This means that no other users have access to tasks or secured dimension members until they are
explicitly assigned.

General rules for security profiles

BPC security is based on the following rules:

• By default, other than the System Administrator, no one has access. Access must be
explicitly granted.

• A user can be assigned access individually and through team membership.

• Member access privileges flow down the hierarchy, from parent to child.

• When in conflict, the least restrictive member access profile is applied.

• In case of a conflict between individual and team member access, individual security
overrules the security defined for a team to which the individual belongs.

• Denial of member access can only be set at the user level.

About task profiles
The ability to assign task profiles is a new security feature in BPC. Task profiles determine what type of
activity or role the user can perform in BPC. For your convenience, two default task profiles are available,
they are: System Admin and Primary Admin. Depending on your requirements, both of these task profiles
can be modified.

Any task profile that either already exists, or is newly created, can have the following default roles
associated with them: System Admin, Primary Admin, and Secondary Admin.

Tips for assigning task profiles

• The number of task profiles administrators can assign to a user is not limited. However, we
recommend that you do not assign multiple task profiles to users because it may cause
confusion in determining their ultimate access rights.

Task access security is cumulative, and tasks cannot be explicitly denied. As a result, assigning
multiple task profiles can create a situation where users have access to tasks that you may not
want them to have. For example, an administrator wants UserA to only retrieve data. If UserA
belongs to a team that has data-send task rights, UserA can also send data.

• Administrators can assign multiple task profiles to a team. However, we recommend that you
do not assign multiple task profiles to a team because it may cause confusion in determining
the ultimate access rights of that team. This will be addressed in a future release so
administrators will not be able to assign multiple task profiles to teams.

About member access profiles
Member Access profiles determine the specific applications to which users have Read access, Read and
Write access or ‘Denied’ (no access). In addition to granting or restricting access by application, you can
grant or restrict access by dimension and member.

When defining access to a secured dimension that has one or more hierarchies defined, security is applied
to the member and all its children. For example, if you grant access to SALESUS, users with access to
SALESUS will also have access to all children of SALESUS.

You can restrict a child member of a parent with ‘Read’ or ‘Read and Write’ access by creating a separate
member access profile and assigning the child ‘Denied’ access.

Resolving member access profile conflicts

As you can define member access by individual users and by teams, there may be situations in which
conflicts occur. This section describes some potential member access conflict scenarios and the rules the

SAP Library: BPC Administration Guide

January 30, 2009 Page 195 of 217

system applies to resolve those conflicts. These scenarios are based on the assumption that the Entity
dimension is a secured dimension and has the following hierarchical structure.

LevelHierarchy

Level1 Level2 Level3 Level4

SalesAsia SalesKorea

SalesJapan

ESalesAsia

H1 WorldWide1 Sales

SalesEurope SalesItaly

SalesFrance

ESalesEurope

Korea SalesKorea

Japan SalesJapan

Asia

eAsia ESalesAsia

Italy SalesItaly

France SalesFrance

H2 WorldWide2

Europe

eEurope ESalesEurope

SAP Library: BPC Administration Guide

January 30, 2009 Page 196 of 217

Conflict between profiles

When there is a conflict between member access profiles, the least restrictive profile is always applied.
This section describes three different scenarios where there are conflicts between profiles.

Scenario 1

• User1 belongs to Team1 and Team2.

• There are two member access profiles: ProfileA and ProfileB.

• ProfileA is assigned to Team1 and ProfileB is assigned to Team2.

The member access profiles are described in the table below.

Member access
profile

Access Dimension Member

ProfileA Read & Write Entity Sales

ProfileB Read Only Entity SalesAsia

In this case, the least restrictive profile between the two, ProfileA (Read & Write), will be applied.

As a result, ProfileB will be ignored by the system, and User1 will be able to send data to both SalesKorea
and SalesItaly.

Scenario 2

• User1 belongs to Team1 and Team2.

• There are two member access profiles: ProfileA and ProfileB.

• ProfileA is assigned to Team1 and ProfileB is assigned to Team2.

The member access profiles are described in the table below.

Member access
profile

Access Dimension Member

ProfileA Read Only Entity Sales

ProfileB Read & Write Entity SalesAsia

In this case, the least restrictive profile between the two, ProfileB (Read & Write), will be applied for the
child members of SalesAsia.

As a result, ProfileA will be ignored by the system, and User1 will be able to send data to SalesKorea, but
not to SalesItaly.

Scenario 3

• User1 does not belong to any team.

• There are two member access profiles: ProfileA and ProfileB.

• Both the profiles are assigned to the user.

SAP Library: BPC Administration Guide

January 30, 2009 Page 197 of 217

The member access profiles are described in the table below.

Member access
profile

Access Dimension Member

ProfileA Denied Entity SalesAsia

ProfileB Read Only Entity Sales

In this case, the least restrictive profiles between the two, ProfileB (Read Only), will be applied.

As a result, ProfileA will be ignored by the system, and User1 will be able to retrieve data from both
SalesKorea and SalesItaly.

Conflict between parent and child members

Authority always flows down the hierarchy, from parent to child. Child members always have the access
level of their parents, unless otherwise specified.

Scenario 1

• User1 belongs to Team1 and ProfileA is assigned to Team1.

• Two levels of member access profiles are defined for ProfileA.

The member access profiles for the ProfileA are described in the table below.

Member access
profile

Access Dimension Member

ProfileA Read & Write Entity Sales

ProfileA Read Only Entity SalesAsia

In this case, the Read & Write access of the Sales member flows down to its children. This flow is
interrupted by assigning Read Only access to SalesAsia (a descendant of Sales), and SalesAsia’s access
flows down to its descendants.

As a result, User1 will be able to send data to SalesItaly, but not to SalesKorea.

Scenario 2

• User1 belongs to Team1 and ProfileA is assigned to Team1.

• ProfileA has two levels of member access profiles.

The member access profiles for the ProfileA are described in the table below.

Member access
profile

Access Dimension Member

ProfileA Read Only Entity Sales

ProfileA Read & Write Entity SalesAsia

In this case, the Read Only access of the Sales member flows down to its children. This flow is interrupted
by assigning Read Only access to SalesAsia (a descendant of Sales), and SalesAsia’s access flows down to
its descendants.

As a result, User1 will be able to send data to SalesKorea but not to SalesItaly.

Conflict between teams and individual users

When there is a conflict between individual user and team access, the individual user’s access level
overrules the security defined for a team that the individual belongs to.

SAP Library: BPC Administration Guide

January 30, 2009 Page 198 of 217

Scenario 1

• User1 belongs to Team1.

• There are two member access profiles: ProfileA and ProfileB.

• ProfileA is assigned to User1 and ProfileB is assigned to Team1.

The member access profiles are described in the table below.

Member access
profile

Access Dimension Member

ProfileA Read Only Entity Sales

ProfileB Read & Write Entity SalesAsia

In this case, the user’s profile, ProfileA will determine User1’s access.

As a result, even if User1 belongs to Team1 (ProfileB) and the team members have data-send access to
SalesAsia member, User1 will not be able to send data to either SalesKorea or SalesItaly.

Scenario 2

• User1 belongs to Team1.

• There are two member access profiles: ProfileA and ProfileB.

• ProfileA is assigned to User1 and ProfileB is assigned to Team1.

The member access profiles are described in the table below.

Member access
profile

Access Dimension Member

ProfileA Denied Entity SalesAsia

ProfileB Read Only Entity Sales

In this case, the user’s profile, ProfileA will be applied.

As a result, even if User1 belongs to Team1 (ProfileB) and the team has data-retrieval access for the Sales
member, User1 will be able to retrieve data from SalesItaly but not from SalesKorea.

Conflict when the same member belongs to different hierarchies

When a member belongs to different hierarchies, and there is a conflict in member access, currently the
most restrictive access is applied.

Scenario 1

• ProfileA and ProfileB are assigned to User1.

The member access profiles are described in the table below.

Member access
profile

Access Dimension Member

ProfileA Read Only Entity WorldWide1

ProfileB Read & Write Entity WorldWide2

In this case, ProfileB will determine User1’s access.

SAP Library: BPC Administration Guide

January 30, 2009 Page 199 of 217

As a result, User1 will be able to send data to SalesKorea, even if ProfileA denies User1 Write access to
SalesKorea (in WorldWide1 hierarchy).

Appendix B: Best Practices for Writing Logic

The BPC modeling logic engine has proven over time to be a very flexible and effective
tool to perform all sorts of calculations within our database, delivering the desired
results efficiently and accurately.

In many situations, however, this result has been obtained only if the logic had been
written “correctly,” a condition that sometimes was not easy to achieve. In many cases
we have been forced to review (and possibly rewrite) what had been originally written
by our customers (or partners or consultants), because, while returning the correct
values, the logic would simply not perform as desired in its first incarnation.

There are several reasons for this. The logic syntax is not easy to grasp at first, and the
way the engine works (especially with the SQL-based instructions) is not very intuitive.
Moreover, the flexibility we have built into the engine results in a multitude of different
ways to skin the same cat, and some of these ways are better (or worse) than others,
performance-wise.

In addition, there has been only limited training available on this subject for a long time,
and the knowledge has not been spread around as it should have.

We have tried to make logic editing and debugging easier with the introduction of the
Logic Assistant and the Logic Debugger in 4.2, but these tools do not help much if you
do not know how to structure logic in the first place (more or less like trying to learn a
language by reading a dictionary).

While a good knowledge of how to write efficient logic may only come from experience,
with this document, we are trying to pass along many of the lessons we learned the
hard way, while trying to help our users write more efficient logic.

A fair knowledge of our logic syntax and basic constructs is assumed. This document is
not intended for beginners.

The Golden Rules
Typically, the recommendations we give administrators when trying to optimize logic can
be summarized into ten Golden Rules:

1. Stay away from MDX logic

2. Load in memory only the required data

3. Carefully select the “triggers” of your calculations

4. Keep the logic structure as compact as possible

5. Minimize the number of COMMITs

6. Minimize the number of GO statements

7. Keep in default logic only the calculations that are absolutely required to be
performed in real time

8. Carefully check what the LOG files say

9. Avoid refresh after send in Excel

10. Run a stress test before going live

Rule 1: Stay away from MDX logic
MDX logic has some appealing advantages: (1) the syntax is, in most cases, fairly
intuitive and easy to master, and (2) it lets you access parent-level and other calculated
values not stored in SQL.

Unfortunately, our experience has been that MDX queries may easily deliver very poor
performance and do not scale well. In practically all cases where we replaced MDX logic
with SQL logic, the improvements have been substantial, and the switch is definitely
worth the effort. The latest versions of SQL logic provide methods to access parent-level

SAP Library: BPC Administration Guide

January 30, 2009 Page 200 of 217

values and there are very few things (if any) written in MDX syntax that SQL logic
cannot calculate. MDX formulas should only be used in “dimension formula members,”
and these should only be limited to ratio-analysis accounts, where the formula must be
applied at all levels in the cube dimensions.

Accessing parent member values in SQL logic

Parent values are not natively stored in the fact tables, and as such, are not immediately
available for SQL logic calculations. However our SQL logic syntax provides a set of
instructions that can be used to generate such values in memory, and use them as input
for other calculations. For the benefit of those who have not read the product
documentation, here is a refresher:

// make sure you have all entities in memory
*XDIM_MEMBERSET ENTITY=<ALL>

// generate all parent values
*CALC_DUMMY_ORG ENTITY=PARENTH1

// use them as appropriate (note the # sign)
*WHEN ENTITY

*IS #SALESEUROPE
*REC(FACTOR=1/GET(ENTITY=#WORLDWIDE1), ACCOUNT=”SomeRatio”)

*ENDWHEN

Note that a CALC_DUMMY_ORG assumes an implied GO statement before the next
WHEN section. Inserting a GO before the WHEN statement will do no harm, but it is
redundant.

Net Profit to Balance Sheet

Another classical example of a calculation that can now be performed in SQL logic
without recurring to MDX expressions is the carry-forward of net profit from the income
statements into the balance sheet. The sample shown below demonstrates how to put
together various techniques to (1) calculate parent values and (2) derive YTD values in
SQL logic. Note in particular how the following features are used:

• The CALC_EACH_PERIOD instruction

• The CALC_DUMMY_ORG instruction

• The PRIOR keyword

• Memory variables (like #OPE_CYNI)

SAP Library: BPC Administration Guide

January 30, 2009 Page 201 of 217

//-------------------------------- Net Income to BS
*CALC_EACH_PERIOD

*XDIM_MEMBERSET TIME=PRIOR,%TIME_SET%,%YEAR%.DEC

*CALC_DUMMY_ORG ACCOUNT=PARENTH1

*WHEN TIME
*IS PRIOR

*WHEN ACCOUNT
*IS CYNI

*REC(ACCOUNT=#OPE_CYNI,TIME=NEXT)
*ENDWHEN

*ELSE
*WHEN ACCOUNT
*IS #NETINCOME

*REC(ACCOUNT=#OPE_CYNI,TIME=NEXT)
*REC(ACCOUNT=CYNI)

*IS #OPE_CYNI
*WHEN TIME.PERIOD
*IS<>JAN

*REC(ACCOUNT=#OPE_CYNI,TIME=NEXT)
*REC(ACCOUNT=CYNI)

*ENDWHEN
*ENDWHEN

*ENDWHEN
//--------------------------------

Refer to the product documentation for other advanced ways to use the above
mentioned features.

Allocations

Very often the driver of an allocation is a value (like Sales or SquareFootage or
Employees) that needs to be compared with its total over a given region. For example,
the allocation formula for LeaseCost could look as follows:

Allocated LeaseCost = LeaseCost * SquareFootage / Total Square_Footage

The challenge here is the need to derive the Total Square_Footage, which is the sum of
SquareFootage across all ENTITIES. While the temptation to write an (indeed quite
simple) MDX formula can be hard to resist, you have plenty of ways to obtain the
desired result without paying the performance penalty of MDX.

SAP Library: BPC Administration Guide

January 30, 2009 Page 202 of 217

Here are some:

Approach 1: Use CALC_DUMMY_ORG

*XDIM_MEMBERSET ENTITY=<ALL>

*CALC_DUMMY_ORG ENTITY=PARENTH1

*WHEN ACCOUNT
*IS SQUAREFOOTAGE

*REC(FACTOR=GET(ACCOUNT=”LEASECOST”,ENTITY=”GLOBALOPS”) /
GET(ENTITY=”#ALL_ENTITIES”), ACCOUNT=”LEASECOST”)
*ENDWHEN

Approach 2: Use a WHEN/ENDWHEN

*XDIM_MEMBERSET ENTITY=<ALL>

*WHEN ACCOUNT
*IS SQUAREFOOTAGE

*REC(ENTITY=”#ALL_ENTITIES”)
*ENDWHEN

*GO

*WHEN ACCOUNT
*IS SQUAREFOOTAGE

*REC(FACTOR=GET(ACCOUNT=”LEASECOST”,ENTITY=”GLOBALOPS”) /
GET(ENTITY=”#ALL_ENTITIES”), ACCOUNT=”LEASECOST”)
*ENDWHEN

Approach 3: Use the latest allocation instructions

* RUN_ALLOCATION
*FACTOR USING/TOTAL
*DIM ACCOUNT WHAT= LeaseCost; WHERE=<<<; USING=

SquareFootage; TOTAL= <<<
*DIM ENTITY WHAT= GLOBALOPS; WHERE=>>>; USING=

>>>; TOTAL= BAS(ALL_ENTITIES)
*ENDALLOCATION

Rule 2: Load in memory only the required data

Why it’s important

The way SQL-based logic works needs to be clearly understood. Once the mechanism is
clear, how to apply it to your benefit becomes fairly straightforward.

The logic engine pulls into memory all records existing in the fact tables for the data
region that has been specified either by the calling object (BPC for Excel or Data
Manager) or by some instructions specified in the logic itself (for example, through the
XDIM_MEMBERSET instruction).

When the appropriate array of records is in memory, it is scanned sequentially from the
first to the last one, in whatever order they come in, and the logic is applied to each
record. If an individual record meets some user-defined criteria (*WHEN something *IS
some value), some other record will be generated (generate *REC such and such).

In contrast to MDX logic, SQL logic will only be able to access values that have been
loaded in memory. For example, any GET statement pointing to something which is not
in memory will return zero, even if the value exists in the database.

The first performance consequence of this mechanism is that, while you need to make
sure that all required records are in memory, it is equally important to load in memory

SAP Library: BPC Administration Guide

January 30, 2009 Page 203 of 217

as few records as possible, otherwise the time to load the records and scan them one by
one may become unacceptably long.

For example, assume you need to perform only this calculation:

Account A = Account B + Account C

The logic to achieve this will look as follows:

*WHEN ACCOUNT
*IS B,C // if you find values
for these accounts…
 *REC(ACCOUNT=A) //… add them into account A
*ENDWHEN

This logic would, by default, load in memory all possible accounts. However, if this is the
only calculation to perform, there is no need to load in memory all accounts, and the
logic will run faster if it is written this way:

*XDIM_MEMBERSET ACCOUNT=B, C

*WHEN *
*IS *
 *REC(ACCOUNT=A)
*ENDWHEN

(In this extreme case there is not even the need to test for any criteria, since all
accounts in memory have the same behavior.)

Running logic from BPC for Excel or Data Manager

Speaking of the data region to load in memory, the following rule must be remembered:
there is a difference in the way the region to process is passed to the logic engine when
called by BPC for Excel and when called by a package in Data Manager.

BPC for Excel by default passes to the default logic the list of all members that have
been sent to the DB for ALL dimensions EXCEPT the ACCOUNT dimension. This means
that the default logic, if not instructed differently, will scan ALL accounts but only for the
members of the Entity, Category, Period, Intco, Datasrc, etc. dimensions that have been
modified via a send.

On the other hand, Data Manager will only pass to the logic engine the relevant
members for the dimensions that are defined in the calling package via some hard-
coded definition or via a run-time prompt to the user. For all other non-specified
dimensions, the logic engine will assume ALL members (with the exception of the
CURRENCY dimension, for which it will default to the LC member).

Knowing the above rule is important, as this may obviously influence the scope of the
region being processed. We have had cases of people reporting that default logic would
give different results when called from a data send in Excel or from Data Manager. The
truth is that the logic behavior does not change. What may change is the scope of the
data that it is instructed to process.

Rule 3: Carefully select the “triggers” of your calculations
The fundamental principle around which SQL logic is based is that our database is
sparse. This means that, while the potential number of cells in a given cube could be
overwhelming, the actual number of cells containing a value is much, much smaller. As
a result, while a given formula could apply to (say) a million cells, most of these cells
are empty and applying that formula to all such empty cells would be a waste of time.
So our approach is to first look at the (few) cells having a stored value; then we decide
what formulas to execute. Here is an example.

Assume you want to calculate REVENUE = UNITS * PRICE. The SQL logic expression for
this could be written as follows:

SAP Library: BPC Administration Guide

January 30, 2009 Page 204 of 217

*WHEN ACCOUNT
*IS PRICE
*REC(FACTOR=GET(ACCOUNT=”UNITS”), ACCOUNT=REVENUE)
*ENDWHEN

However, your application may contain the price of thousands of different products,
while only a few products are sold in a given period. So, the above logic will find many
PRICE accounts that will be multiplied by UNITS accounts containing no value, simply
returning a result of zero. A more correct structure of the logic would use the UNITS as a
trigger, as follows:

*WHEN ACCOUNT
*IS UNITS

*REC(FACTOR=GET(ACCOUNT=”PRICE”), ACCOUNT=REVENUE)
*ENDWHEN

In reality the above example is not the most common case of the use of an incorrect
trigger, and is not even the worst. There are situations which lead to extremely slow
executions, and they are actually fairly easy to spot. Quite often these logics contain the
NOADD keyword, and/or REC statements containing an EXPRESSION which does not
reference the current %VALUE%. Here is a simple example:

Assume that account B must be equal to account A, in case the category is ACTUAL.
Some administrators would write a logic script like this:

*WHEN CATEGORY
*IS ACTUAL
*REC(EXPRESSION=GET(ACCOUNT”A”), ACCOUNT=”B”, NOADD)
*ENDWHEN

However this is clearly a poorly written logic: the logic is scanning many records
belonging to category ACTUAL, so they all meet the WHEN criteria, and for each of them
the value of A will be added to B. As a result, the administrator has been forced to use
the NOADD keyword, to make sure account B receives the value of account A only once.
(And besides, this is done even if A is null.)

Such a logic script may easily turn out being 100 (yes, 100!) times slower than this
(more correct) one:

*WHEN ACCOUNT
*IS A
*WHEN CATEGORY
*IS ACTUAL

*REC(ACCOUNT=”B”)
*ENDWHEN
*ENDWHEN

Rule 4: Keep the logic structure as compact as possible
When the logic scans the records one by one trying to find if some calculation must be
applied to them, it may need to go through the entire list of criteria defined in the logic
to find the applicable case. For example, the logic may contain a long list of WHEN /
ENDWHEN structures, more or less as follows:

SAP Library: BPC Administration Guide

January 30, 2009 Page 205 of 217

*WHEN ACCOUNT
*IS A

*REC(ACCOUNT=X)
*ENDWHEN
*WHEN ACCOUNT
*IS B

*REC(ACCOUNT=X)
*ENDWHEN
*WHEN ACCOUNT
*IS C

*REC(ACCOUNT=Y)
*ENDWHEN
*WHEN ACCOUNT
*IS D

*REC(ACCOUNT=Y)
*ENDWHEN

In this example, the criteria is always the same: we are always testing for the ID of an
ACCOUNT. If this is the case, the first thing to do is to turn the multiple WHEN /
ENDWHEN structures into only one, as follows:

*WHEN ACCOUNT
*IS A

*REC(ACCOUNT=X)
*IS B

*REC(ACCOUNT=X)
*IS C

*REC(ACCOUNT=Y)
*IS D

*REC(ACCOUNT=Y)
*ENDWHEN

This will not only reduce the number of instructions the engine has to process, but it will
make sure the remaining instructions in the structure are skipped, once an instruction
meeting the criteria for the current record is found. For example, if the account in the
current record is A, all lines starting form *IS B to *ENDWHEN will be skipped.

Another way to reduce the size of this logic is to combine the instructions for the
accounts that have the same behavior, i.e., those which share similar REC statements.
In this case the accounts A and B add up into the same account X, and the accounts C
and D add up into the same account Y, so the logic could be written like this:

*WHEN ACCOUNT
*IS A,B

*REC(ACCOUNT=X)
*IS C,D

*REC(ACCOUNT=Y)
*ENDWHEN

Finally, should the logic still be very long, it might be worth making use of properties, to
define what account must be added to what account in a more condensed way. While in
the current simple example this may be overkill, our logic might be further reduced by
defining a property SOMEPROPERTY where, for the appropriate accounts, you enter the
ID of the destination account as follows:

A B

1 ID SOMEPROPERTY

2 A X

3 B X

4 C Y

5 D Y

SAP Library: BPC Administration Guide

January 30, 2009 Page 206 of 217

6 E

7 F

8 G

This will have the benefit of reducing the length of the logic to the bare minimum, while
simplifying its maintenance, as any new account will be directly controlled by the value
of SOMEPROPERTY, avoiding the need to modify the logic. No matter how many
accounts are involved in the process, the final logic will simply say:

*WHEN ACCOUNT.SOMEPROPERTY
*IS<>”” // i.e. different from blank

*REC(ACCOUNT=ACCOUNT.SOMEPROPERTY)
*ENDWHEN

Another case of inefficient logic structure is the way some WHEN / ENDWHEN structures
are nested. For example, take the following case:

*WHEN ACCOUNT
*IS A

*WHEN INTCO
*IS NONINTCO

*REC(ACCOUNT=X)
*ENDWHEN

*IS B
*WHEN INTCO
*IS NONINTCO

*REC(ACCOUNT=Y)
*ENDWHEN

*IS C
*WHEN INTCO
*IS NONINTCO

*REC(ACCOUNT=Z)
*ENDWHEN

*ENDWHEN

Here, several accounts generate a calculation only when the INTCO member is
NONINTCO. The above structure may end up testing several account IDs before finding
that the current INTCO member is not NONINTCO and the entire process might have
been skipped right away. A more efficient way of writing this logic would be:

*WHEN INTCO
*IS NONINTCO
*WHEN ACCOUNT
*IS A

*REC(ACCOUNT=X)
*IS B

*REC(ACCOUNT=Y)
*IS C

*REC(ACCOUNT=Z)
*ENDWHEN
*ENDWHEN

Rule 5: Minimize the number of COMMITs
Quite often an entire logic cannot be executed in one single step, as different portions of
the calculations may require different sets of input data to be loaded in memory.

As a result, logic is normally broken into separate COMMIT sections that get executed in
sequence by the logic engine.

Each COMMIT section in logic triggers the following set of actions:

SAP Library: BPC Administration Guide

January 30, 2009 Page 207 of 217

• Some input records are read from the db, issuing one or more SQL queries, and
pulled into memory

• The input records are scanned one by one and some new records are generated

• The new records are sent to the db

These actions, if performed several times, make the logic slower, and it is a proven fact
that logic broken into many small COMMIT sections will run much slower than a
corresponding logic where all data are loaded, calculated and written at once, using one
single COMMIT section. For this reason, while reducing an entire logic into one single
COMMIT may not be practically feasible, it is standard practice to try and merge as
many different COMMIT sections into as few as possible.

Here are a few examples.

Example 1

Assume you have some accounts that need to be calculated for INTCO = NONINTCO,
and some others must be calculated for INTCO <> NONINTCO.

This may be written splitting the logic in two COMMIT sections:

*XDIM_MEMBERSET INTCO=NONINTCO // load only NONINTCO

*WHEN ACCOUNT
*IS A,B,C

*REC(…)
*ENDWHEN

*COMMIT

*XDIM_MEMBERSET INTCO<>NONINTCO // load all other INTCO
members

*WHEN ACCOUNT
*IS X,Y,Z

*REC(…)
*ENDWHEN

The same logic will, however, run faster if the two COMMIT sections are merged into one
as follows:

*XDIM_MEMBERSET INTCO=<ALL> // load all INTCO members at
once

*WHEN INTCO
*IS NONINTCO
*WHEN ACCOUNT
*IS A,B,C

*REC(…)
*ELSE
*WHEN ACCOUNT
*IS X,Y,Z

*REC(…)
*ENDWHEN
*ENDWHEN

The tradeoff here is to load more data in one single pass and add a WHEN evaluation in
the body of the instructions.

SAP Library: BPC Administration Guide

January 30, 2009 Page 208 of 217

Example 2

Assume you have logic that calculates these accounts:

REVENUE = UNITS * PRICE
VAT = VAT_RATE * REVENUE / 100

Since the result of the first calculation (REVENUE) is to be used as input for the second
calculation, you need to split the logic in two steps. One way to achieve this is to
separate the steps with a COMMIT instruction as follows:

*WHEN ACCOUNT
*IS UNITS

*REC(FACTOR=GET(ACCOUNT=”PRICE”), ACCOUNT=REVENUE)
*ENDWHEN

*COMMIT

*WHEN ACCOUNT
*IS REVENUE

*REC(FACTOR=GET(ACCOUNT=”VAT_RATE”) / 100, ACCOUNT=VAT)
*ENDWHEN

By so doing, the latest value of the REVENUE account will be available for reading in the
second part of the logic.

This technique however will make the logic run slower. A better solution is to replace the
*COMMIT instruction with a *GO instruction as follows:

*WHEN ACCOUNT
*IS UNITS

*REC(FACTOR=GET(ACCOUNT=”PRICE”), ACCOUNT=REVENUE)
*ENDWHEN

*GO

*WHEN ACCOUNT
*IS REVENUE

*REC(FACTOR=GET(ACCOUNT=”VAT_RATE”) / 100, ACCOUNT=VAT)
*ENDWHEN

Any GO statement will simply break the logic in separate sections, basically similar to a
COMMIT statement, but with the fundamental difference that the results are not posted
to the database but simply appended to the set of records existing in memory. After
this, no new query is issued, and the subsequent GO section of instructions is applied to
the same set of records held in memory, now containing also the results of the prior GO
section. At the end of the process all values calculated by all the GO sections combined
are written to the database in one single action.

Example 3

Another situation where the result of a prior calculation must be used as inputs for a
subsequent calculation is whenever the calculated closing balances of an account need
to be used as opening balances for the next period calculation. In earlier versions of our
product this mechanism could be activated using the instruction:

*PROCESS_EACH_MEMBER=TIME

This instruction would perform a logic execution (read / calculate / write) for each
selected member of the defined dimension. If the dimension happened to be the TIME
dimension, the execution would also automatically be performed in the correct sequence
(from the past to the future) and also fill any gaps (for example, selecting JAN and MAR
would automatically include FEB).

While this instruction would do the job, it would split the logic execution in multiple
COMMIT actions, leading to slower performance.

Today this instruction can, in most situations, be replaced with a *CALC_EACH_PERIOD,
which is similar in nature, but calculates all periods in memory before writing all results
at once to the database. In this respect, a CALC_EACH_PERIOD behaves like the GO

SAP Library: BPC Administration Guide

January 30, 2009 Page 209 of 217

instruction, while the older PROCESS_EACH_MEMBER behaves like a COMMIT
instruction.

Note: The efforts of reducing the number of COMMIT sections may force the user to violate rule number
2 (load in memory as few data as possible). In general, loading less data in memory is not as
effective a performance improvement as reducing the number of COMMITs. In most cases the
logic will run faster even if loading more data in memory, thanks to the benefit of having fewer
COMMIT sections in the logic itself. This trade-off must be evaluated on a case-by-case basis.

 Rule 6: Minimize the number of GO statements
While using GO statements in place of COMMIT statements will definitely make the logic
run faster, this is still not the ultimate solution in logic speed. After all, even if data are
not re-loaded in memory, they are scanned multiple times (essentially once per GO
statement), and this adds to the time of logic execution. While it may not always be
possible, it is wise to avoid using too many GO statements within the same COMMIT
section.

In the example shown above, a logic structure that runs faster will be one that
calculates everything at once, within the same pass, avoiding the use of any COMMIT or
GO statement. One way of writing it could be as follows:

*WHEN ACCOUNT
*IS UNITS

*REC(FACTOR=GET(ACCOUNT=”PRICE”), ACCOUNT=REVENUE)
*REC(FACTOR= GET(ACCOUNT=”PRICE”) * GET(ACCOUNT=”VAT_RATE”) / 100,

ACCOUNT=VAT)
*ENDWHEN

Rule 7: Keep in default logic only the calculations that are absolutely
required to be performed in real time

No matter what you do, the time of execution of the default logic when data are entered
from BPC for Excel may remain unacceptably slow. If this is the case, the only solution is
to try and reduce the amount of data that is calculated and stored in real time during
the data entry process. This depends very much on what you need to see immediately
after entering the number in a schedule. Whenever possible, the generation of all
calculated values that do not need to be shown as immediate feedback to the user
should be postponed to a more appropriate time.

For example, the execution of the currency conversion may only need to be executed in
a batch mode, while the input schedule only shows the values in local currency.
Similarly, any inter-company elimination or allocation, which can only be executed when
values from all entities have been entered (and translated into the reporting currency),
can be delayed to a later phase.

Along these lines, some customers use the following approach: their default logic only
contains some instructions which flag an account with a value of 1, to indicate that “This
entity has been modified. The logic is to be executed on it.” A separate process,
triggered manually or scheduled to run every so many minutes (or even seconds), looks
for the entities that need to be processed, and runs the appropriate logic on them,
setting their flag account back to zero (“calculated”) at the end of the process.

Rule 8: Always review the LOG files
It is certainly redundant to mention that any logic should be carefully tested before
releasing it in a production environment. What people sometimes do not realize,
however, is the importance of analyzing the content of the log file. The log file is critical
to figuring out what went wrong during a logic execution.

The log files generated by a logic execution contain an incredible amount of information,
ranging from some statistical details (like the date and time of execution, the version of
the DLL, the duration of the execution of each single step, etc.), to more specific

SAP Library: BPC Administration Guide

January 30, 2009 Page 210 of 217

information (like the region passed to the logic, the queries used to read or calculate the
values, the results of the calculations, etc.).

The log file is the starting point of any investigation concerning the behavior (or
misbehavior) of any logic. For this reason, a copy of the log file should always be
submitted to the support team, together with the LGF and LGX files of the logic,
whenever an issue with logic is reported.

Moreover, while the log file is critical to fixing logic, it is also a best practice to review
the log file when your logic runs without errors. This will ensure you understand the
performance profile of your logic, and might point out areas for improvement (or simply
solidify your understanding of well-written logic).

Rule 9: Avoid refresh-after-send in Excel
In several situations, what is to shown in the data entry schedules as a calculated value
is only limited to some total (like the value of a parent member) or some validated
amount (like total assets minus total liabilities).

In these cases, it may be appropriate to consider the possibility to perform such
calculations directly in Excel (using Excel formulas), even if this is a repetition of what
gets calculated in the db behind the scenes. This has the double advantage that (a)
values are immediately updated on the screen as users type in their numbers, and (b)
there is no need to perform a refresh of the workbook after every send as no calculated
data will be retrieved. This will make the data entry process much lighter and faster.

Rule 10: Run a stress test before going live
This too should go without saying, but we have experienced a very high number of cases
where people are caught by surprise when some logic, which seemed to perform very
efficiently in a development environment, became a real show stopper when put under
the stress of a production environment, with many concurrent users running it
simultaneously over large amounts of data.

While this has proven particularly true in case of MDX logic, to some extent the same
situation has been experienced with SQL logic. In the latter case, it may not be SQL
itself not scaling well, but it is the response time of the OLAP queries issued by the input
schedules or reports being refreshed by many users while many data are sent to the
database by many logic instances. This may expand beyond the most conservative
expectations, as a result of the large amount of locks being applied to the cube by OLAP.

For this reason, we recommend that you allocate time to perform an adequate stress
test on the application in the implementation plan, well before the moment to go live
arrives.

SAP Library: BPC Administration Guide

January 30, 2009 Page 211 of 217

Appendix C: Script logic documentation updates

The following information is not included in the Administration documentation at this
time, but will be included in a future release.

Ability to control SQL time-out
The following new instruction can be used to modify the time out limit to SQL queries
(currently defaulting to 600 seconds):

*TIMEOUT={number of seconds}

This instruction can be written anywhere in the logic and it applies to the entire logic.

Examples:

*TIMEOUT=300 // 5 minutes
*TIMEOUT=1200 // 20 minutes
*TIMEOUT=0 // unlimited time out

Calling the same stored procedure multiple times
Now, multiple executions of the same stored procedure within the same COMMIT section
(with or without the same parameters) are supported. Previously, the same stored
procedure could only be invoked once, unless the executions where separated by a
COMMIT statement.

Running the last stored procedure within a given COMMIT section
Until now, if a stored procedure would return an error, all subsequent stored procedures
(together with the rest of the logic) would be skipped. Now you can recur to an option to
make sure the last stored procedure invoked within the current COMMIT section will still
be executed, even in case of failure of a preceding one. This option can be turned on
using the following syntax:

*RUN_STORED_PROCEDURE=ProcedureName(Parameters) ON_ERROR_RUN_LAST

If any stored procedure with the above setting (ON_ERROR_RUN_LAST) fails (either
because of an SQL error or an *ERROR* message returned in the log file), the logic will
still run the LAST stored procedure in the COMMIT section, before aborting with the error
message.

This option can be useful in case the user needs to make sure that some cleanup activity
is performed, no matter what happens to some stored procedures being invoked by the
logic.

SAP Library: BPC Administration Guide

January 30, 2009 Page 212 of 217

Here is an example:

 //---
*RUN_STORED_PROCEDURE=CHECKSTATUS({Parameters},LOCK)

*RUN_STORED_PROCEDURE=SPRUNCONVERSION({Parameters})
ON_ERROR_RUN_LAST

*RUN_STORED_PROCEDURE=SPRUNCONSOLIDATION({Parameters})
ON_ERROR_RUN_LAST

*RUN_STORED_PROCEDURE=CHECKSTATUS({Parameters},UNLOCK)

*COMMIT

 //---

Added support of %WHEN% keyword in *REC instruction
It is now possible to retrieve within any part of a REC statement the value of the
innermost WHEN instruction of the current WHEN / ENDWHEN structure

*WHEN TIME.TIMEID
*IS *
 *REC(EXPRESSION=%WHEN%/10000, ACCOUNT= # + ACCOUNT.ID + _ +
%WHEN%)
*ENDWHEN

The above example, when TIME is 2006.MAR and ACCOUNT is CASH, will return a record
where the SIGNEDDATA is 2006.03 and the ACCOUNT is #CASH_20060300.

Ability to disable CALC_EACH_PERIOD in one GO section
When the CALC_EACH_PERIOD action is set, all GO sections within a given COMMIT
section will be processed one period at a time. It is possible however that one of the GO
sections could be processed for all periods at once. To allow for this (faster) processing,
we now support a different syntax for the GO instruction, as follows:

*GO_ALL_PERIODS

This instruction is similar to a GO instruction, with the difference that, even if the
CALC_EACH_PERIOD action is turned on for the current COMMIT, this individual GO
section will be calculated for all periods at once.

Ability to disable CALC_EACH_PERIOD in one CALC_ORG or
CALC_DUMMY_ORG section

When the CALC_EACH_PERIOD action is set, all CALC_ORG or CALC_DUMMY_ORG
instructions within a given COMMIT section will be processed one period at a time. It is
possible however that one of the CALC_ORG or CALC_DUMMY_ORG instruction could be
processed for all periods at once. To allow for this (faster) processing, we now support a
new setting for the CALC_ORG and CALC_DUMMY_ORG instruction, as follows:

*CALC_DUMMY_ORG

*ORG {dim}={property}

*CALC_ALL_PERIODS

*ENDCALC

This setting, which can only be triggered from inside the multi-line version of the
CALC_ORG and CALC_DUMMY_ORG instructions (like the one used in the above
example), will make so that, even if the CALC_EACH_PERIOD action is turned on for the
current COMMIT, this individual CALC_ORG or CALC_DUMMY_ORG action will be
calculated for all periods at once.

SAP Library: BPC Administration Guide

January 30, 2009 Page 213 of 217

Index

%

%CURRENCY_SET%....................................68

%LOGTABLE%..68

%SCOPETABLE% ..68

%WHEN% keyword in *REC instruction 209

*

**SELECT .. 132

*LOGIC.. 130

*RUN_ALLOCATION................................... 199

A

A - dimension type......................................38

Account .. 27, 38, 186

Account Transformation rules68

activity audit, enabling 180

activity audit, reporting 180

Actuals .. 28, 38

ADD / *ENDADD 101

add drillkey .. 182

ADD_DIM..101, 108

adding business rules tables to applications....67

adding dimension properties.........................26

adding KPIs.. 163

adding properties to dimensions25

adding steps...57

adding teams ...43

adding users ..42

adding work states......................................60

admin users ...42

allocation ... 199

Appendix: best practices for writing logic 196

application parameters 177

application set parameters 175

Appset Not Available11

AppSet, creating new11

AppSetPublications.................................... 186

ApShell reports and input schedules15

assigning dimensions to applications24

automatic adjustment detail75

automatic adjustments73

B

BASE... 136

BEGIN ... 102

best practices, logic 196

Book Reports folder 15

Budget ... 28, 36, 38

business rules tables, adding to applications .. 67

business rules tables, deleting...................... 67

C

CALC... 102

CALC_DUMMY_ORG 102

CALC_EACH_PERIOD.......................... 104, 134

CALC_ORG.. 102, 134

CALCULATE_DIFFERENCE 104

Calculations ... 68

Calling the same stored procedure 208

carry-forward rules 71

Category .. 22, 28, 38

CC property ... 32

CLEAR_DESTINATION 105

COMMIT .. 107

COMMIT_EACH_LEVEL............................... 106

COMMIT_EACH_MEMBER 106

COMMIT_MAX_MEMBERS........................... 107

COMMITs ... 203

Compress Fact Table 37

concurrent locks ... 37

consolidation methods................................. 80

consolidation rules 80

consolidation rules formulas 80

controlling SQL time-out............................ 208

CPE... 96

creating dimensions 19

creating new application 36

Creating new application sets 11

Currency ..29, 38

currency conversion rules 68

currency conversions................................... 63

Currency translation.................................... 29

current view.................................. 37, 38, 182

SAP Library: BPC Administration Guide

January 30, 2009 Page 214 of 217

custom actions for reviewers57

D

database specifications 173

default task profiles.....................................45

defining teams..43

defining user IDs ..42

delete dimension property............................26

deleting appsets ...11

deleting business rules tables from an
application ..67

deleting work states62

DESTINATION .. 107

DESTINATION_APP 108

Dimension

property..22

types ..38

dimension processing, scheduling21

dimension property, add & delete..................26

dimension reserved names...........................19

dimension types ...19

dimensions, assigning to applications24

dimensions, creating19

dimensions, processing................................20

disable CALC_EACH_PERIOD 209

document subtypes 185

document types .. 184

Drill Through

access .. 182

creating .. 182

Defining .. 182

Drill Through .. 182

DrillKey ... 182

drill-through queries.................................. 183

drill-through table 184

E

Editing default messages 172

edting work states61

email addresses..42

enabling activity audit 180

END .. 102

ENDADD .. 101

ENDFUNCTION.. 111

ENDLOOKUP... 117

ENDSELECT ... 134

ENDSUB .. 135

ENDWHEN ... 137

Entity22, 29, 38, 172

Entity Method... 80

Entity property, adding CC........................... 32

EQUITY ..27, 80

EVDES.......................................27, 28, 29, 31

EVGET..28, 182

EvInp .. 182

EVPRO... 186

EVTIM ..28, 31

Expense .. 27

EXPRESSION..................................... 137, 141

F

FACTOR.. 137, 141

FIRST.. 136

FIRST_PERIOD ... 108

FLD.. 137, 141

Flow dimension .. 63

FOR .. 110

Forecast ...28, 38

Forecasting application 38

FORMAT22, 27, 31, 186

FORMULA..27, 32

full process 20, 22, 23

FUNCTION ... 111

G

GET ... 137, 142

GO.. 112

GO section ... 209

GO statements ... 206

Group dimension .. 63

H

hierarchy 22, 27, 28, 29, 31

HLEVEL27, 28, 29, 31

HQ folder... 15

HTTPS ... 41

I

ID....................................... 22, 27, 28, 29, 31

SAP Library: BPC Administration Guide

January 30, 2009 Page 215 of 217

InApp .. 25, 26

INCLUDE.. 114

Income

INC ..27

Income..27

incremental process 20, 23

Intercompany booking rules72

Intercompany dimension required properties..30

intercompany eliminations73

intercompany eliminsations detail75

invalid characters...................................... 111

IP address.. 186

J

JOIN.. 114

K

KPIs, adding... 163

L

LAST_MEMBER ... 115

legal consolidation appset63

LEVEL..31

LOCAL_CURRENCY 116

locks, concurrent ..37

LOG files.. 206

LOGIC ..27, 130

Logic, best practices.................................. 196

LOGIC_BY .. 116

LOGIC_MODE ... 116

LOGIC_PROPERTY 117

LOOKUP..117, 142

M

maintaining dimension properties..................26

manage application sets11

manage applications.............................. 36, 37

manage dimensions22

manage members22

Manager ..60

Manager folder ...15

managing work states60

maxstatus..68

MDX..27

MDX logic... 196

MDX queries .. 26

MEASURES.. 121, 173

Measures dimension.................................... 38

Member ID .. 22

member sheets 22, 27, 28, 29, 186

members 22, 27, 29, 31, 38, 173, 182, 186

members, adding.. 22

MEMBERSET... 121

Memory variables 122

messages 22, 37, 172

metadata... 22

Method codes... 80

modeling ... 29

N

new application11, 36

new application set 11

new dimension ... 22

new users .. 36

NEXT.. 110, 136

NO_PARALLEL_QUERY............................... 124

NOADD... 137, 140

Not Available.. 172

O

OLAP Services .. 173

Open report library 15

Open schedule library.................................. 15

Optimizing ..22, 37

Owner ... 60

owner dimension .. 36

Owner property26, 29

P

PARENT ..27, 29

Parent/child ... 22

PARENTH1 ... 29

pound (#) sign ... 122

PRIOR ... 136

Process members 11, 22, 27, 29, 37, 38, 173

process members from member sheet........... 22

process options .. 20

PROCESS_EACH_MEMBER.......................... 126

PROCESS_FAC2.. 126

SAP Library: BPC Administration Guide

January 30, 2009 Page 216 of 217

processing an application37

processing dimensions.................................20

processing members22

properties

dimension contains...................................22

properties, in dimensions25

Proportional ...80

publishing office documents 186

PUT... 126

Q

QUERY_FILTER ... 127

QUERY_SIZE .. 128

QUERY_TYPE .. 128

R

Rate application ..35

read/write dimensions24

REC...105, 137, 140

Refer

UNICODE .. 173

Refresh..22

refresh-after-send..................................... 207

RENAME_DIM108, 129

reordering work states.................................61

reporting on activty audit........................... 180

reporting on work states61

reserved member names21

reserved names

dimensions ..19

resetting BPFs ..54

reviewer custom actions, setting up57

RUN_ALLOCATION 199

RUN_STORED_PROCEDURE........................ 129

RUNLOGIC ... 130

Running the last stored procedure............... 208

S

scheduling dimension processing21

SCOPE_BY ... 132

Script logic documentation updates 208

secured dimensions............................... 22, 24

security 11, 22, 28, 29

Security management 191

member access profile 191

resolving member access profile conflicts .. 191

task profiles .. 191

Security Management

general rules ... 191

security reports .. 52

SELECT ... 132

SELECTCASE .. 134

Server Manager.. 170

setting concurrent locks............................... 37

Shell application11, 22, 36, 182

SKIP_DIM ... 108, 134

SolveOrder .. 32

SPCOPYOPENING .. 71

special property - CC................................... 32

SPICBOOKING.. 72

SPICDATA.. 72

SPRUNCALCACCOUNT 68

SPRUNCONVERSION 68

SPRUNELIM.. 73

SPRUNVALID.. 77

SQL

adding members to dimension 22

Query file.. 182

SQL Server 173, 182

SQL Server 2000 Analysis Services 173

SQL logic ... 197

step properties in a BPF............................... 57

STORE_ORG... 134

stress test ... 207

Style property 27, 28, 29, 31, 186

Style value... 186

style-based formatting 186

SUB .. 135

Subaccounts, defining 27

Subdirectories .. 11

Subtable dimension..................................... 63

SYSLIB .. 136

T

team definitions, modifying.......................... 44

teams, adding .. 43

SAP Library: BPC Administration Guide

January 30, 2009 Page 217 of 217

templates11, 22, 36

TEST_WHEN... 144

Time

TIMEID ...31

Time-shift instructions 136

TOTAL

TOTAL member ..31

TOTAL ...31

U

UnaryOerator ...32

Update Version ...22

URL... 186

US eliminiation ...73

USE... 137

users, adding ...42

V

Validate

Validate and process members...................22

validating members.....................................22

Validation... 22, 38

Validation rules...77

Validation rules detail78

Viewing security reports...............................52

W

Web Server.. 186

WebFolderDirectory.....................................22

WHEN.. 137

Wizard folder..15

work states

adding.. 60

deleting .. 62

editing.. 61

editing descriptions 61

managing.. 60

reordering... 61

reporting... 61

work status

changing application settings..................... 36

owner property.. 26

work status.. 57

work status dimensions 36

Write Back ... 37

WRITE_TO_FAC2 145

WRITE_TO_FILE 146

X

XDIM_ADDMEMBERSET 146

XDIM_DEFAULT .. 146

XDIM_FILTER ... 146

XDIM_GETINPUTSET 147

XDIM_GETMEMBERSET.............................. 148

XDIM_MAXMEMBERS................................. 150

XDIM_MEMBER... 150

XDIM_MEMBERSET 151

XDIM_REQUIRED...................................... 152

Y

YTD ...38, 39

